\[\boxed{\text{373\ (373).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ 2 \cdot \left( x^{2} + \frac{1}{x^{2}} \right) - \left( x + \frac{1}{x} \right) = 2\]
\[Пусть\ \ t = x + \frac{1}{x};\ \ \]
\[t^{2} = \left( x + \frac{1}{x} \right)^{2} = x^{2} + 2 + \frac{1}{x^{2}};\ \]
\[x^{2} + \frac{1}{x^{2}} = t^{2} - 2:\]
\[2 \cdot \left( t^{2} - 2 \right) - t = 2\]
\[2t^{2} - 4 - t - 2 = 0\]
\[2t^{2} - t - 6 = 0\]
\[D = 1 + 4 \cdot 2 \cdot 6 = 49\]
\[t_{1,2} = \frac{1 \pm 7}{4} = 2;\ - \frac{3}{2}\text{.\ }\]
\[1)\ x + \frac{1}{x} = 2\]
\[x^{2} - 2x + 1 = 0\ \ \]
\[(x - 1)^{2} = 0\ \ \]
\[x = 1.\]
\[2)\ x + \frac{1}{x} = - \frac{3}{2}\text{\ \ }\]
\[2x^{2} + 3x + 2 = 0\]
\[D = 9 - 4 \cdot 2 \cdot 2 < 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[Ответ:x = 1.\]
\[\textbf{б)}\ \ 9x^{2} - 18x + \frac{9}{x^{2}} - \frac{18}{x} = 22\]
\[9 \cdot \left( x^{2} + \frac{1}{x^{2}} \right) - 18 \cdot \left( x + \frac{1}{x} \right) = 22.\]
\[Пусть\ \ \ t = x + \frac{1}{x};\ \ \]
\[x^{2} + \frac{1}{x^{2}} = t^{2} - 2:\]
\[9 \cdot \left( t^{2} - 2 \right) - 18t = 22\]
\[9t^{2} - 18 - 18t - 22 = 0\]
\[9t^{2} - 18t - 40 = 0\]
\[D_{1} = 81 + 9 \cdot 40 = 441\]
\[t_{1,2} = \frac{9 \pm 21}{9} = - \frac{4}{3};\frac{10}{3}\text{.\ }\]
\[1)\ x + \frac{1}{x} = \frac{10}{3}\]
\[3x^{2} - 10x + 3 = 0\]
\[D = 25 - 9 = 16\]
\[x_{1,2} = \frac{5 \pm 4}{3} = 3;\frac{1}{3}\text{.\ }\]
\[2)\ x + \frac{1}{x} = - \frac{4}{3}\ \]
\[3x^{2} - 4x + 3 = 0\]
\[D = 4 - 3 \cdot 3 < 0 \Longrightarrow корней\ нет.\]
\[Ответ:\ x = \frac{1}{3};\ \ x = 3.\]
\[\boxed{\text{373.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
Пояснение.
Решение.
\[(x - 3)^{2} + (y - 8)^{2} = r^{2}.\]
\[\textbf{а)}\ точка\ касания\ (3;0):\ \ \ \]
\[(3 - 3)^{2} + (0 - 8)^{2} = 64;\]
\[(x - 3)^{2} + (y - 8)^{2} = 64.\]
\[\textbf{б)}\ точка\ касания\ (0;8):\ \ \]
\[(0 - 3)^{2} + (8 - 8)^{2} = 9;\]
\[(x - 3)^{2} + (y - 8)^{2} = 9.\]