\[\boxed{\text{372\ (372).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \left( \frac{x + 1}{x - 2} \right)^{2} - 16 \cdot \left( \frac{x - 2}{x + 1} \right)^{2} = 15\]
\[Пусть\ \ t = \left( \frac{x + 1}{x - 2} \right)^{2}:\]
\[\ t - \frac{16}{t} = 15\]
\[t^{2} - 15t - 16 = 0\]
\[По\ теореме\ Виета:\]
\[t_{1} + t_{2} = 15;\ \ \ t_{1} \cdot t_{2} = - 16\]
\[t_{1} = 16;\ \ \ \ t_{2} = - 1.\]
\[\left( \frac{x + 1}{x - 2} \right)^{2} = 16\ \ \]
\[\frac{x + 1}{x - 2} = \pm 4\]
\[1)\ \ \ \]
\[\frac{x + 1}{x - 2} = 4\ \]
\[x + 1 = 4x - 8\]
\[3x = 9\ \ \]
\[x = 3.\]
\[2)\ \frac{x + 1}{x - 2} = - 4\]
\[x + 1 = - 4x - 8\]
\[5x = 7\]
\[x = 1,4.\]
\[\left( \frac{x + 1}{x - 2} \right)^{2} = - 1 \Longrightarrow корней\ нет.\]
\[Ответ:x = 1,4;\ \ x = 3.\]
\[\textbf{б)}\ \left( \frac{x + 3}{x - 5} \right)^{2} - 9 \cdot \left( \frac{x - 5}{x + 3} \right)^{2} = 8;\]
\[Пусть\ t = \left( \frac{x + 3}{x - 5} \right)^{2}:\ \]
\[t - \frac{9}{t} = 8\]
\[t^{2} - 8t - 9 = 0\ \ \]
\[D_{1} = 16 + 9 = 25\]
\[t_{1} = 4 + 5 = 9;\ \ \]
\[\ t_{2} = 4 - 5 = - 1.\]
\[\left( \frac{x + 3}{x - 5} \right)^{2} = 9\ \ \]
\[\frac{x + 3}{x - 5} = \pm 3.\]
\[1)\ \frac{x + 3}{x - 5} = 3\text{\ \ }\]
\[x + 3 = 3x - 15\]
\[2x = 18\]
\[x = 9.\]
\[2)\ \frac{x + 3}{x - 5} = - 3\ \]
\[x + 3 = - 3x + 15\]
\[4x = 12\]
\[x = 3.\]
\[2)\ \ \left( \frac{x + 3}{x - 5} \right)^{2} = - 1 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[Ответ:x = 3;x = 9.\]
\[\boxed{\text{372.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
Пояснение.
Решение.
\[(x - 5)^{2} + (y - 7)^{2} = r^{2}\]
\[\textbf{а)}\ точка\ касания\ (5;0):\ \ \ \]
\[(5 - 5)^{2} + (0 - 7)^{2} = 49;\]
\[\Longrightarrow r^{2} = 49 \Longrightarrow r = 7.\]
\[\textbf{б)}\ точка\ касания\ (0;7):\ \ \ \]
\[(0 - 5)^{2} + (7 - 7)^{2} = 25;\]
\[\Longrightarrow r^{2} = 25 \Longrightarrow r = 5.\]