\[\boxed{\text{374\ (374).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3\frac{1}{4} \cdot \left( a + \frac{1}{a} \right) = a^{3} + \frac{1}{a^{3}}\]
\[\frac{13}{4} \cdot \left( a + \frac{1}{a} \right) = a^{3} + \frac{1}{a^{3}}\]
\[Пусть\ \ y = a + \frac{1}{a};\ \ \ \ \]
\[y^{3} = \left( a + \frac{1}{a} \right)^{3} =\]
\[= a^{3} + \frac{1}{a^{3}} + \frac{3}{a} + 3a;\]
\[a^{3} + \frac{1}{a^{3}} = y^{3} - 3 \cdot \left( a + \frac{1}{a} \right) =\]
\[= y^{3} - 3y:\ \]
\[\frac{13}{4}y = y^{3} - 3y\]
\[4y^{3} - 12y - 13y = 0\ \]
\[4y^{3} - 25y = 0\]
\[y \cdot \left( 4y^{2} - 25 \right) = 0\]
\[y(2y - 5)(2y + 5) = 0\]
\[4y(y - 2,5)(y + 2,5) = 0\]
\[y_{1} = 0;\ \ y_{2} = 2,5;\ \ y_{3} = - 2,5.\]
\[1)\ a + \frac{1}{a} = 0\]
\[a^{2} + 1 = 0 \Longrightarrow корней\ нет.\]
\[2)\ a + \frac{1}{a} = 2,5\]
\[a^{2} - 2,5a + 1 = 0\ \ \]
\[2a^{2} - 5a + 2 = 0\]
\[D = 25 - 4 \cdot 2 \cdot 2 = 9\]
\[a_{1,2} = \frac{5 \pm 3}{4} = 2;\frac{1}{2}\text{.\ }\]
\[3)\ a + \frac{1}{a} = - 2,5\]
\[\left( a + \frac{1}{a} \right)\ в\ 3\frac{1}{4}\ больше \Longrightarrow\]
\[\Longrightarrow не\ подходят.\]
\[Ответ:a = \frac{1}{2};\ \ a = 2.\]
\[\boxed{\text{374.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ (x - 1)^{2} + (y - 2)^{2} = 16\]
\[окружность\ с\ центром\ (1;2)\ и\ \]
\[R = 4.\]
\[\textbf{б)}\ (x + 2)^{2} + y^{2} = 4.\ \]
\[окружность\ с\ центром\ \]
\[( - 2;0)\ и\ R = 2.\]
\[\textbf{в)}\ x^{2} + (y - 3)^{2} = 25\]
\[окружность\ с\ центром\ (0;3)\ и\ \]
\[R = 5.\]
\[\textbf{г)}\ (x + 5)^{2} + (y + 7)^{2} = 49\]
\[окружность\ с\ центром\ \]
\[( - 5; - 7)\ и\ R = 7.\]