\[\boxed{\text{342\ (342).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{3} - 4x^{2} + 3x + 2 = 0;\ \ \]
\[x = 2 \Longrightarrow один\ из\ корней\ \]
\[уравнения.\]
\[(x - 2)\left( x^{2} - 2x - 1 \right) = 0\]
\[x^{2} - 2x - 1 = 0\]
\[D_{1} = 1 + 1 = 2\]
\[x = 1 \pm \sqrt{2}.\]
\[Ответ:2;1 - \sqrt{2};1 + \sqrt{2}.\]
\[\textbf{б)}\ x^{4} + 2x^{3} - 7x^{2} - 8x + 12 = 0\ \ \]
\[x_{1} = 1 \Longrightarrow корень.\]
\[(x - 1)\left( x^{3} + 3x^{2} - 4x - 12 \right) = 0\ \ \]
\[x_{2} = 2 \Longrightarrow корень.\]
\[(x - 1)(x - 2)\left( x^{2} + 5x + 6 \right) = 0;\ \ \]
\[x^{2} + 5x + 6 = 0\]
\[x_{1} + x_{2} = - 5;\ \ \ x_{1} \cdot x_{2} = 6\]
\[x_{3,4} = - 3;\ - 2.\]
\[Ответ:\ - 3;\ - 2;1;2.\]
\[\boxed{\text{342.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[(a + 2)x^{2} + 8x + a - 4 = 0\]
\[Квадратное\ уравнение\ имеет\ \]
\[два\ корня,\ если\ D > 0.\]
\[D = 16 - (a + 2)(a - 4) =\]
\[= 16 - a^{2} + 2a + 8 =\]
\[= 24 + 2a - a^{2}\]
\[D > 0 \Longrightarrow a^{2} - 2a - 24 < 0,\]
\[(a - 6)(a + 4) < 0\]
\[a + 2 \neq 0,\ \ a \neq - 2 \Longrightarrow\]
\[при\ a \in ( - 4; - 2) \cup ( - 2;6).\]