\[\boxed{\text{251}\text{\ (251)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = x^{7};\ \ g(x) = x^{10}\]
\[\textbf{а)}\ f(25) - f(12) =\]
\[= 25^{7} - 12^{7} > 0\ \]
\[\textbf{б)}\ f( - 30) - f( - 20) =\]
\[= ( - 30)^{7} - ( - 20)^{7} =\]
\[= - 30^{7} + 20^{7} < 0\]
\[\textbf{в)}\ f(0) \cdot f(60) = 0^{70} \cdot 60^{70} = 0\]
\[\textbf{г)}\ g(17) - g(5) =\]
\[= 17^{10} - 5^{10} > 0\]
\[\textbf{д)}\ g( - 9) \cdot g( - 17) =\]
\[= ( - 9)^{10} \cdot ( - 17)^{10} =\]
\[= 9^{10} \cdot 17^{10} > 0\]
\[\textbf{е)}g(38) - g(0) =\]
\[= 38^{10} - 0^{10} = 38^{10} > 0\ \]
\[\boxed{\text{251.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[Пусть\ x - числитель\ дроби;\]
\[(x + 3) - знаменатель\ дроби.\]
\[(3x - 7) - новый\ числитель;\]
\[2 \cdot (x + 3) - 11 =\]
\[= 2x + 6 - 11 =\]
\[= 2x - 5\ (новый\ знаменатель).\]
\[Составим\ уравнение:\]
\[1\ :\frac{x}{x + 3} = \frac{3x - 7}{2x - 5}\]
\[\frac{x + 3}{x} = \frac{3x - 7}{2x - 5}\]
\[(x + 3)(2x - 5) = x(3x - 7)\]
\[2x^{2} + 6x - 5x - 15 = 3x^{2} - 7x\]
\[x^{2} - 8x + 15 = 0\]
\[D_{1} = 16 - 15 = 1\]
\[x_{1} = 4 + 1 = 5 - числитель\ \]
\[дроби.\ \ \]
\[x + 3 = 5 + 3 = 8 -\]
\[знаменатель\ дроби.\]
\[x_{2} = 4 - 1 = 3 - числитель\ \]
\[дроби.\]
\[x + 3 = 3 + 3 = 6 -\]
\[знаменатель\ дроби.\]
\[Искомые\ дроби:\]
\[\frac{5}{8}\ \ и\ \ \frac{3}{6}.\]
\[Ответ:\ \frac{5}{9};\ \ \frac{3}{6}.\]