Решебник по алгебре 9 класс Макарычев Задание 201

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 201

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{201.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[y = 10x - формула.\]

\[f(0) = 0;\]

\[\text{\ f}(7) = 10 \cdot 7 = 70.\]

\[0 \leq y \leq 70\]

\[Область\ значений:\ \ \lbrack 0;70\rbrack.\]

\[Ответ:y = 10x;\ \ \lbrack 0;70\rbrack.\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\mathbf{201}\text{.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[y = x^{2} + bx + c;\ \ \]

\[\ вершина\ (6;\ - 12).\]

\[x_{b} = - \frac{b}{2a} = - \frac{b}{2 \cdot 1} = - \frac{b}{2};\]

\[y_{b} = \left( - \frac{b}{2} \right)^{2} + b \cdot \left( - \frac{b}{2} \right) + c =\]

\[= \frac{b^{2}}{4} - \frac{b^{2}}{2} + c = c - \frac{b^{2}}{4};\]

\[Так\ как\ вершина\ имеет\ \]

\[координаты\ (6;\ - 12),\ то:\]

\[\left\{ \begin{matrix} - \frac{b}{2} = 6\ \ \ \ \ \ \ \ \ \ \ \\ c - \frac{b^{2}}{4} = - 12 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} b = - 12\ \ \ \ \ \ \ \ \ \ \ \ \\ 4c - b^{2} = - 48 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} b = - 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 4c - ( - 12)^{2} = - 48 \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} b = - 12 \\ 4c = 96 \\ \end{matrix} \Longrightarrow \right.\ \left\{ \begin{matrix} b = - 12 \\ c = 24\ \ \ \\ \end{matrix} \right.\ \]

\[Ответ:при\ b = - 12;\ \ c = 24.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам