\[\boxed{\text{132\ (131).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{(1 - 3a)^{2}}{3a^{2} + 5a - 2}\]
\[3a^{2} + 5a - 2 = 0\]
\[D = 5^{2} + 4 \cdot 3 \cdot 2 =\]
\[= 25 + 24 = 49\]
\[a_{1} = \frac{- 5 + 7}{6} = \frac{2}{6} = \frac{1}{3};\ \ \ a_{2} =\]
\[= \frac{- 5 - 7}{6} = - 2.\]
\[3a^{2} + 5a - 2 =\]
\[= 3 \cdot (a + 2)\left( a - \frac{1}{3} \right) =\]
\[= (a + 2)(3a - 1);\]
\[\Longrightarrow \frac{(1 - 3a)^{2}}{(a + 2)(3a - 1)} =\]
\[= - \frac{1 - 3a}{a + 2} = \frac{3a - 1}{a + 2}.\]
\[\boxed{\text{132\ (}\text{c}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ y = x^{2} + 3\]
\[Парабола\ получена\ путем\ \]
\[переноса\ графика\ функции\ \]
\[y = x^{2}\ на\ \]
\[3\ единицы\ вверх\ вдоль\ \]
\[по\ оси\ ординат.\]
\[y \in \lbrack 3;\ + \infty).\]
\[\textbf{б)}\ y = (x + 1)^{2}\]
\[Парабола\ получена\ путем\ \]
\[переноса\ графика\ функции\ \]
\[y = x^{2}\ на\]
\[1\ единицу\ влево\ вдоль\ \]
\[оси\ абсцисс.\]
\[y \in \lbrack 0; + \infty).\]
\[\textbf{в)}\ y = - x^{2} + 2\]
\[Парабола\ получена\ путем\ \]
\[переноса\ графика\ функции\ \]
\[y = - x^{2}\ на\]
\[2\ единицы\ вверх\ вдоль\ \]
\[оси\ ординат.\]
\[y \in ( - \infty;2\rbrack.\]
\[\boxed{\text{132.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \ \frac{2a - 1}{10a^{2} - a - 2}\]
\[10a^{2} - a - 2 = 0\]
\[D = 1 + 4 \cdot 10 \cdot 2 = 81\]
\[a_{1,2} = \frac{1 \pm 9}{20},\ \ a_{1} = \frac{1}{2},\]
\[\text{\ \ }a_{2} = - \frac{2}{5};\]
\[\Longrightarrow 10a^{2} - a - 2 =\]
\[= 10 \cdot \left( a - \frac{1}{2} \right)\left( a + \frac{2}{5} \right) =\]
\[= (2a - 1)(5a + 2);\]
\[\Longrightarrow \frac{2a - 1}{10a^{2} - a - 2} =\]
\[= \frac{2a - 1}{(2a - 1)(5a + 2)} = \frac{1}{5a + 2};\]
\[\textbf{б)}\ \frac{6a^{2} - 5a + 1}{1 - 4a^{2}}\]
\[6a^{2} - 5a + 1 = 0\]
\[D = 5^{2} - 4 \cdot 6 \cdot 1 = 25 - 24 = 1\]
\[a_{1,2} = \frac{5 \pm 1}{12},\ \ a_{1} = \frac{1}{2},\ \ \]
\[a_{2} = \frac{1}{3};\]
\[\Longrightarrow 6a^{2} - 5a + 1 =\]
\[= 6 \cdot \left( a - \frac{1}{2} \right)\left( a - \frac{1}{3} \right) =\]
\[= (2a - 1)(3a - 1);\]
\[\Longrightarrow \frac{6a^{2} - 5a + 1}{1 - 4a^{2}} =\]
\[= \frac{(2a - 1)(3a - 1)}{(1 - 2a)(1 + 2a)} = \frac{1 - 3a}{1 + 2a}\text{.\ }\]