\[\boxed{\text{133\ (133).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ (x - 1)^{2} + (x + 1)^{2} =\]
\[= (x + 2)^{2} - 2x + 2\]
\[x^{2} - 2x + 1 + x^{2} + 2x + 1 =\]
\[= x^{2} + 4x + 4 - 2x + 2\]
\[2x^{2} + 2 = x^{2} + 2x + 6\]
\[x^{2} - 2x - 4 = 0\]
\[D_{1} = 1 + 4 = 5\]
\[x_{1,2} = 1 \pm \sqrt{5}.\]
\[Ответ:x = 1 \pm \sqrt{5}.\]
\[\textbf{б)}\ (2x - 3)(2x + 3) - 1 =\]
\(= 5x + (x - 2)^{2}\)
\[4x^{2} - 9 - 1 = 5x + x^{2} - 4x + 4\]
\[3x^{2} - x - 14 = 0\]
\[D = 1 + 4 \cdot 3 \cdot 14 = 169\]
\[x_{1} = \frac{1 - 13}{6} = - 2;\ \ \ \ x_{2} =\]
\[= \frac{1 + 13}{6} = \frac{14}{6} = 2\frac{1}{3}.\]
\[Ответ:x = - 2;\ \ x = 2\frac{1}{3}.\]
\[\boxed{\text{133.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[(x + 3)^{2} - (x - 3)^{2} =\]
\[= (x - 2)^{2} + (x + 2)^{2}\]
\[x^{2} + 6x + 9 - x^{2} + 6x - 9 =\]
\[= x^{2} - 4x + 4 + x^{2} + 4x + 4\]
\[12x = 2x^{2} + 8\]
\[x^{2} - 6x + 4 = 0\]
\[D = 3^{2} - 4 = 9 - 4 = 5\]
\[x_{1,2} = 3 \pm \sqrt{5}\text{\ \ \ }\]