\[\boxed{\text{130\ (130).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = 2x^{2} - 5x + 6;\ \ \ y =\]
\[= x^{2} - 7x + n.\]
\[Графики\ имеют\ только\ одну\ \]
\[общую\ точку,\ если\ D = 0:\]
\[2x^{2} - 5x + 6 = x^{2} - 7x + n\]
\[x^{2} + 2x + 6 - n = 0\]
\[D_{1} = 1 - (6 - n) = 1 - 6 + n =\]
\[= n - 5\]
\[n - 5 = 0\]
\[n = 5.\]
\[x^{2} + 2x + 6 - 5 = 0\]
\[x^{2} + 2x + 1 = 0\]
\[(x + 1)^{2} = 0\]
\[x = - 1;\]
\[y( - 1) = 2 \cdot ( - 1)^{2} - 5 \cdot ( - 1) +\]
\[+ 6 = 2 + 5 + 6 = 13.\]
\[Общая\ точка:\ \ \ ( - 1;13).\]
\[Ответ:при\ n = 5;\ \ ( - 1;13).\]
\[\boxed{\text{130.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]