\[\boxed{\text{1073\ (1073).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x_{1},x_{2},x_{3} - три\ числа,\ \]
\[составляющие\ геометрическую\ \]
\[прогрессию.\]
\[x_{1} + x_{2} + x_{3} = - 3,\]
\[x_{2} = x_{1}q,\ \ x_{3} = x_{2}q,\]
\[S_{3} = \frac{x_{1}\left( q^{3} - 1 \right)}{q - 1} = - 3,\]
\[\frac{x_{1}(q - 1)(q^{2} + q + 1)}{q - 1} = - 3\]
\[x_{1}\left( q^{2} + q + 1 \right) = - 3\]
\[q^{2} + q + 1 > 0 \Longrightarrow при\ любом\ q,\ \ \]
\[x_{1} < 0.\]
\[1)\ x_{1} = - 1,\]
\[q^{2} + q + 1 = 3\]
\[q^{2} + q - 2 = 0\]
\[D = 1 + 8 = 9\]
\[q_{1} = - 2 \Longrightarrow b_{1} = - 1,\ \ \]
\[b_{2} = 2,\ \ b_{3} = - 4;\ \]
\[q_{2} = 1 \Longrightarrow b_{1} = - 1,\ \ \]
\[b_{2} = - 1,\ \ b_{3} = - 1.\]
\[2)\ x_{2} = - 2,\]
\[q^{2} + q + 1 = 1,5\]
\[2q^{2} + 2q - 1 = 0\]
\[D = 4 + 8 = 12\]
\[q_{1,2} = \frac{- 2 \pm 2\sqrt{3}}{4} = \frac{- 1 \pm \sqrt{3}}{2} \Longrightarrow\]
\[\Longrightarrow не\ подходит\ по\ условию.\]
\[3)\ x_{3} = - 3,\]
\[q^{2} + q + 1 = 0\]
\[q^{2} + q = 0\]
\[q(q + 1) = 0\]
\[q = 0 \Longrightarrow не\ подходит\ по\ \]
\[условию.\]
\[q = - 1 \Longrightarrow b_{1} = - 3,\ \ b_{2} = 3,\]
\[b_{3} = - 3.\]
\[4)\ x_{4} = - 4,\]
\[q^{2} + q + 1 = 0,75\]
\[4q^{2} + 4q + 1 = 0\]
\[D = 16 - 16 = 0\]
\[q = - \frac{1}{2} \Longrightarrow b_{1} = - 4,\ \ b_{2} = 2,\ \ \]
\[b_{3} = - 1.\]
\[5)\ x_{5} = - 5,\]
\[q² + q + 1 = 0,6\]
\[5q^{2} + 5q + 2 = 0\]
\[D = 25 - 40 = - 15 < 0 \Longrightarrow нет\ \]
\[решения.\]
\[Ответ:\ 1)\ - 1;2;\ - 4;\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ 2)\ - 1;\ - 1;\ - 1;\ \ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ 3) - 3;3;\ - 3;\ \ \ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ 4)\ - 4;2;\ - 1.\]