\[\boxed{\mathbf{851\ (851).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ b_{1},\ b_{3},\ldots,b_{2n - 1}\]
\[b_{3} = b_{1} \cdot q^{2}\ \]
\[b_{4} = b_{1} \cdot q^{3}\ \]
\[b_{2n - 1} = b_{1} \cdot q^{2(n - 1)}\]
\[q = \frac{b_{1} \cdot q^{2}}{b_{1}} = q^{2} \Longrightarrow является.\]
\[2)\ 2b_{1},\ 2b_{2},\ldots,{2b}_{n}\]
\[2b_{2} = 2b_{1} \cdot q\ \ \]
\[2b_{n} = 2b_{1} \cdot q^{n - 1}\]
\[q = \frac{2b_{1} \cdot q}{2b_{1}} = q \Longrightarrow является.\]
\[3)\ b_{1} + b_{2},\ b_{2} + b_{3},\ldots,\ b_{n - 1} + b_{n}\ \]
\[b_{2} = b_{1} \cdot q;\ \ \ \ b_{3} = b_{1} \cdot q²\ и\ т.д.\]
\[b_{1} + b_{2} = b_{1} + b_{1}\text{q\ \ }\]
\[b_{2} + b_{3} = b_{1}q + b_{1}q^{2}\ \]
\[b_{n - 1} + b_{n} = b_{1}q^{n - 2} + b_{1}q^{n - 1}\ \]
\[q = \frac{b_{2} + b_{3}}{b_{1} + b_{2}} = \frac{b_{1}q + b_{1}q^{2}}{b_{1} + b_{1}q} =\]
\[= \frac{b_{1}q(1 + q)}{b_{1}(1 + q)} = q\ \ \]
\[q \neq - 1 \Longrightarrow является.\]
\[4)\ \frac{1}{b_{1}},\ \frac{1}{b_{2}},\ \ldots,\frac{1}{b_{n}}\]
\[\frac{1}{b_{2}} = \frac{1}{b_{1}q}\text{\ \ }\]
\[\frac{1}{b_{n}} = \frac{1}{b_{1}q^{n - 1}}\]
\[q = \frac{1}{b_{2}}\ :\frac{1}{b_{1}} = \frac{1 \cdot b_{1}}{b_{1}q} =\]
\[= \frac{1}{q} \Longrightarrow является.\]