\[\boxed{\mathbf{852\ (852).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ b_{2},\ b_{4},\ \ldots,\ b_{2n}\]
\[\ b_{2} = b_{1}q\]
\[b_{4} = b_{1}q^{3}\ \]
\[b_{2n} = b_{1}q^{2n - 1}\]
\[q = \frac{b_{4}}{b_{2}} = \frac{b_{1}q^{3}}{b_{1}q} =\]
\[= q^{2} \Longrightarrow \ \ является;\]
\[2)\ b_{1}b_{3},\ b_{2}b_{4},\ b_{3}b_{5},\ \ldots,\ b_{n - 2}b_{n}\]
\[q = \frac{b_{1}b_{n}}{b_{1}b_{3}} = \frac{b_{1}qb_{1}q^{3}}{b_{1}b_{1}q^{2}} =\]
\[= q² \Longrightarrow является.\]
\[\boxed{\mathbf{852.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\left\{ \begin{matrix} a_{3} = 11 \\ a_{7} = 27 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} a_{1} + 2d = 11 \\ a_{1} + 6d = 27 \\ \end{matrix} \right.\ - \ \]
\[\ - 4d = - 16 \Longrightarrow \ \ d = 4,\ \ \]
\[a_{1} = 11 - 2 \cdot 4 = 3\]
\[S_{n} = \frac{2a_{1} + d(n - 1)}{2} \cdot n = 253\]
\[\frac{2 \cdot 3 + 4 \cdot (n - 1)}{2} \cdot n = 253\]
\[\frac{6 + 4 \cdot (n - 1)}{2} \cdot n = 253\]
\[(3 + 2n - 2) \cdot n = 253\]
\[(2n + 1) \cdot n = 253\]
\[2n^{2} + n - 253 = 0\]
\[D = 1 + 2024 = 2025\]
\[n = \frac{- 1 - 45}{4} < 0,\]
\[\ \ n = \frac{- 1 + 45}{4} = 11\]
\[Ответ:n = 11.\]