\[\boxed{\mathbf{809\ (809).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[S_{n} = n^{2} - 3n\]
\[a_{n} = S_{n} - S_{n - 1} = n^{2} - 3n -\]
\[- \left( (n - 1)^{2} - 3 \cdot (n - 1) \right) =\]
\[= n^{2} - 3n -\]
\[- \left( n^{2} - 2n + 1 - 3n + 3 \right) = n^{2} -\]
\[- 3n - \left( n^{2} - 5n + 4 \right) =\]
\[= n^{2} - 3n - n^{2} + 5n - 4 =\]
\[= 2n - 4\]
\[a_{n + 1} - a_{n} = 2 \cdot (n + 1) - 4 -\]
\[- (2n - 4) = 2n + 2 - 4 -\]
\[- 2n + 4 = 2,\]
\[тогда\ при\ любом\ n \in N \Longrightarrow\]
\[\Longrightarrow \ a_{n + 1} = a_{n} + 2 \Longrightarrow d = 2.\ \]
\[S_{n} = n^{2} - 3n \Longrightarrow \text{\ \ \ }\]
\[{\Longrightarrow a}_{1} = S_{1} = 1 - 3 \cdot 1 = - 2.\]
\[Ответ:\ a_{1} = - 2;\ \ \ d = 2.\]
\[\boxed{\mathbf{809.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{x^{2} - 16}{|x + 1|} \leq 0\]
\[Ответ:x \in \lbrack - 4;\ - 1) \cup ( - 1;4\rbrack.\]
\[2)\ \frac{x^{2} - 5x - 14}{|x - 8|} \geq 0\]
\[\frac{(x - 7)(x + 2)}{|x - 8|} \geq 0\]
\[Ответ:\]
\[( - \infty;\ - 2\rbrack \cup \lbrack 7;8) \cup (8;\ + \infty).\]