\[\boxed{\mathbf{808\ (808).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем\ прогрессию:\]
\[a_{1},\ a_{2},a_{3},\ \ldots a_{n},\ a_{n + 1},\ a_{n + 2},\ldots,\ a_{2n}\text{\ \ }\]
\[Тогда:\]
\[S_{1} = \frac{a_{1} + a_{n}}{2} \cdot n;\ \ \ \ \]
\[\text{\ \ }S_{2} = \frac{a_{n + 1} + a_{2n}}{2} \cdot n\]
\[S_{2} - S_{1} = \frac{a_{n + 1} + a_{2n}}{2} \cdot n -\]
\[- \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{a_{n + 1} + a_{2n} - a_{1} - a_{n}}{2} \cdot n\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= a_{1} + dn - d\]
\[a_{n + 1} = a_{1} + d(n + 1 - 1) =\]
\[= a_{1} + dn\]
\[a_{2n} = a_{1} + d(2n - 1) =\]
\[= a_{1} + 2dn - d\]
\[Доказано.\]
\[\boxed{\mathbf{808.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left\{ \begin{matrix} x^{2} - 5x - 6 < 0 \\ x > - 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} (x - 6)(x + 1) < 0 \\ x > - 1,2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:x \in ( - 1;6).\]
\[2)\ \left\{ \begin{matrix} x^{2} - 5x - 6 < 0 \\ x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:x \in (0;6).\]
\[3)\ \left\{ \begin{matrix} x^{2} - 5x - 6 < 0 \\ x \geq 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:\ \varnothing.\]
\[4)\ \left\{ \begin{matrix} x^{2} - 5x - 6 \leq 0 \\ x \geq 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:x = 6.\]
\[5)\ \left\{ \begin{matrix} 6x^{2} + x - 2 > 0 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ ,\ \ \]
\[D = 1 + 48 = 49,\ \ \]
\[x = \frac{- 1 + 7}{12} = \frac{1}{2};\ \ \ \ \ \]
\[x = \frac{- 1 - 7}{12} = - \frac{2}{3}\]
\[Ответ:x \in (1;\ + \infty).\]
\[6)\ \left\{ \begin{matrix} 6x^{2} + x - 2 > 0 \\ x > - \frac{1}{3}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[Ответ:x \in (0,5;\ + \infty).\]
\[7)\ \left\{ \begin{matrix} 6x^{2} + x - 2 > 0 \\ x > - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \ \]
\[Ответ:\]
\[x \in \left( - 2;\ - \frac{2}{3} \right) \cup (0,5;\ + \infty).\]
\[8)\ \left\{ \begin{matrix} 6x^{2} + x - 2 \geq 0 \\ x \leq \frac{1}{2}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[Ответ:x \in \left( - \infty;\ - \frac{2}{3} \right) \cup \lbrack 0,5\rbrack.\]