\[\boxed{\mathbf{808\ (808).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Запишем\ прогрессию:\]
\[a_{1},\ a_{2},a_{3},\ \ldots a_{n},\ a_{n + 1},\ a_{n + 2},\ldots,\ a_{2n}\text{\ \ }\]
\[Тогда:\]
\[S_{1} = \frac{a_{1} + a_{n}}{2} \cdot n;\ \ \ \ \]
\[\text{\ \ }S_{2} = \frac{a_{n + 1} + a_{2n}}{2} \cdot n\]
\[S_{2} - S_{1} = \frac{a_{n + 1} + a_{2n}}{2} \cdot n -\]
\[- \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{a_{n + 1} + a_{2n} - a_{1} - a_{n}}{2} \cdot n\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= a_{1} + dn - d\]
\[a_{n + 1} = a_{1} + d(n + 1 - 1) =\]
\[= a_{1} + dn\]
\[a_{2n} = a_{1} + d(2n - 1) =\]
\[= a_{1} + 2dn - d\]
\[Доказано.\]