\[\boxed{\mathbf{810\ (810).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[S = \frac{a_{1} + a_{n}}{2} \cdot n = \frac{10 + 99}{2} \cdot 90 =\]
\[= 109 \cdot 45 = 4905 - все\]
\[\ двузначные\ числа.\]
\[Кратны\ трем:\ \ \ 12,\ 15,\ 18,\ \ldots,\]
\[\ 99,\ldots \Longrightarrow \text{\ \ }d = 3.\]
\[a_{n} = a_{1} + d(n - 1)\ \]
\[99 = 12 + 3 \cdot (n - 1)\ \]
\[99 = 12 + 3n - 3\]
\[3n = 90\]
\[n = 30.\ \ \]
\[Тогда:\]
\[S^{3} = \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{12 + 99}{2} \cdot 30 = 115 \cdot 15 =\]
\[= 1665.\]
\[Кратны\ пяти:\ \ \ \ 10\ ,15,\ \ldots,\ 95,\]
\[\ldots \Longrightarrow \text{\ \ }d = 5.\]
\[a_{n} = a_{1} + d(n - 1)\]
\[95 = 10 + 5 \cdot (n - 1)\ \]
\[95 = 10 + 5n - 5\]
\[5n = 90\]
\[n = 18.\ \ \]
\[Тогда:\]
\[S^{5} = \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{10 + 95}{2} \cdot 18 = 105 \cdot 9 = 945.\]
\[Ни\ на\ 3,\ ни\ на\ 5:\ \ 3 \cdot 5 = 15.\]
\[Делятся\ на\ 15:15,\ 30,\ 45,\ \ldots,\]
\[90 \Longrightarrow \text{\ \ }d = 15.\]
\[a_{n} = a_{1} + d(n - 1)\ \]
\[90 = 15 + 15 \cdot (n - 1)\text{\ \ }\]
\[90 = 15 + 15n - 15\]
\[15n = 90\ \]
\[\ n = 6\]
\[S^{15} = \frac{a_{1} + a_{n}}{2} \cdot n =\]
\[= \frac{15 + 90}{2} \cdot 6 = 105 \cdot 3 = 315.\]
\[Тогда\ искомая\ сумма:\]
\[S = S - S^{3} - S^{5} + S^{15} = 4905 -\]
\[- 1665 - 945 + 315 = 2610.\]
\[Ответ:2610.\]