\[\boxed{\mathbf{783\ (783).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[- 6,2;\ - 5,9;\ - 5,6;\ldots\]
\[a_{1} = - 6,2;\ \ \ \ \]
\[\ d = - 5,9 + 6,2 = 0,3\]
\[a_{n} = a_{1} + d(n - 1) =\]
\[= - 6,2 + 0,3 \cdot (n - 1)\]
\[- 6,2 + 0,3 \cdot (n - 1) < 0\]
\[0,3 \cdot (n - 1) < 6,2\]
\[n - 1 < \frac{6,2}{0,3}\]
\[n < \frac{62}{3} + 1\]
\[n < 22,\ тогда\ \ n = 21\]
\[S_{21} = \frac{2a_{1} + d \cdot 20}{2} \cdot 21 =\]
\[= \frac{2 \cdot ( - 6,2) + 0,3 \cdot 20}{2} \cdot 21 =\]
\[= \frac{- 12,4 + 6}{2} \cdot 21 =\]
\[= - 3,2 \cdot 21 = - 67,2\]
\[Ответ:\ - 67,2.\]
\[\boxed{\mathbf{783.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left\{ \begin{matrix} 5x - 4x > 8 - 10\text{\ \ \ \ } \\ 10x - 9x > 10 - 15 \\ \end{matrix} \right.\ \]
\[2)\ \left\{ \begin{matrix} 8x - 5x \leq 1\text{\ \ }\text{\ \ \ \ \ } \\ - 4x + 5x \geq - 4 \\ \end{matrix} \right.\ \]
\[3)\ \left\{ \begin{matrix} 5x - 4x \leq - 20 + 10 \\ 2x - x \leq - 1\text{\ \ }\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[4)\ \left\{ \begin{matrix} 8x - 7x \geq 3 \\ 2x - x \leq - 1 \\ \end{matrix} \right.\ \]
\(5)\ \left\{ \begin{matrix} - 2x \leq - 16 \\ 5x \geq 40\ \ \ \ \ \ \\ \end{matrix} \right.\ \)
\[6)\ \left\{ \begin{matrix} 5 - 12x < 6 - 12x \\ 7 + 3x > 3x - 4\ \text{\ \ \ \ } \\ \end{matrix} \right.\ \]