\[\boxed{\mathbf{782\ (782).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[n = S_{n - 1}\]
\[a_{1} = 1;\ \ d = 1;\ \ a_{n} = n - 1\]
\[S_{n - 1} = \frac{1 + n - 1}{2} \cdot (n - 1) =\]
\[= \frac{n}{2} \cdot (n - 1)\]
\[n = S_{n - 1};\ \ \ \ подставим:\ \ \ \]
\[n = \frac{n}{2} \cdot (n - 1)\]
\[\frac{n}{2} \cdot (n - 1) - n = 0\]
\[n \cdot \left( \frac{1}{2} \cdot (n - 1) - 1 \right) = 0\]
\[n = 0\ \ \ или\ \ \ \frac{1}{2}n - \frac{1}{2} - 1 = 0\]
\[\frac{1}{2}n = 1\frac{1}{2};\ \ n = 3.\]
\[Ответ:3.\]