\[\boxed{\mathbf{782\ (782).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[n = S_{n - 1}\]
\[a_{1} = 1;\ \ d = 1;\ \ a_{n} = n - 1\]
\[S_{n - 1} = \frac{1 + n - 1}{2} \cdot (n - 1) =\]
\[= \frac{n}{2} \cdot (n - 1)\]
\[n = S_{n - 1};\ \ \ \ подставим:\ \ \ \]
\[n = \frac{n}{2} \cdot (n - 1)\]
\[\frac{n}{2} \cdot (n - 1) - n = 0\]
\[n \cdot \left( \frac{1}{2} \cdot (n - 1) - 1 \right) = 0\]
\[n = 0\ \ \ или\ \ \ \frac{1}{2}n - \frac{1}{2} - 1 = 0\]
\[\frac{1}{2}n = 1\frac{1}{2};\ \ n = 3.\]
\[Ответ:3.\]
\[\boxed{\mathbf{782.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \left\{ \begin{matrix} 9 + 2x \leq 3x + 7 \\ x - 2 > 2x - 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} - x \leq - 2 \\ - x > - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x \geq 2 \\ x < 3 \\ \end{matrix} \right.\ \]
\[Ответ:\lbrack 2;3).\]
\[2)\ \left\{ \begin{matrix} \frac{x - 1}{4} + \frac{x + 1,7}{3} \geq \frac{3x + 1}{5}\ \ \ | \cdot 60 \\ \frac{x + 2}{4} - \frac{x + 8}{5} < \frac{3x - 1}{10}\ \ \ \ \ \ | \cdot 20 \\ \end{matrix} \right.\ \ \]
\[\left\{ \begin{matrix} 15x - 15 + 20x + 34 \geq 36x + 12 \\ 5x + 10 - 4x - 32 < 6x - 2\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} - x \geq - 7 \\ - 5x < 20 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x \leq 7 \\ x > - 4 \\ \end{matrix} \right.\ \]
\[Ответ:( - 4;7\rbrack\text{.\ }\]