\[\boxed{\mathbf{768\ (769).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a_{1} = 40;\ \ d = 10;\ \ n = 7\]
\[S_{7} = \frac{2a_{1} + 6d}{2} \cdot 7 =\]
\[= \frac{80 + 60}{2} \cdot 7 = 70 \cdot 7 =\]
\[= 490\ (страниц).\]
\[Ответ:490\ страниц.\]
\[\boxed{\mathbf{768.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ a^{5} - 5 > 5a^{4} - a;\ \ a \geq 5\]
\[a^{5} - 5 - 5a^{4} + a \geq 0\]
\[a^{4} \cdot (a - 5) + (a - 5) \geq 0\]
\[(a - 5)\left( a^{4} + 1 \right) \geq 0 \Longrightarrow верно,\]
\[\ при\ a \geq 5;\]
\[2)\ b^{3} + b + 2 \geq 0;\ \ b \geq - 1\]
\[b^{3} + 1 + b + 1 \geq 0\]
\[(b + 1)\left( b^{2} - b + 1 \right) +\]
\[+ (b + 1) \geq 0\]
\[(b + 1)\left( b^{2} - b + 1 + 1 \right) \geq 0\]
\[(b + 1)\left( b^{2} - b + 2 \right) \geq 0\]
\[b + 1 \geq 0;\ \ так\ как\ b \geq - 1 \Longrightarrow\]
\[\Longrightarrow \ \ b^{2} - b + 2 > 0;\]
\[так\ как\ D = 1 - 8 < 0;\]
\[неравенство\ верно.\]
\[3)\ c^{3} + c \leq 3c^{2} + 3;\ \ c \leq 3\]
\[c^{3} + c - 3c^{2} - 3 \leq 0\]
\[c^{2}(c - 3) + (c - 3) \leq 0\]
\[(c - 3)\left( c^{2} + 1 \right) \leq 0 \Longrightarrow верно.\]