\[\boxed{\mathbf{507\ (507).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[9\ ч\ 50\ мин = 9\frac{5}{6}\ ч\]
\[9\frac{5}{6}\ ч - 7ч = 2\frac{5}{6}\ ч =\]
\[= \frac{17}{6}\ ч - в\ пути\ первая\ лодка.\]
\[10\ ч\ 40\ мин = 10\frac{4}{6}\ ч\]
\[10\frac{4}{6}\ ч - 7\ ч = 3\frac{2}{3}\ ч =\]
\[= \frac{11}{3}\ ч - в\ пути\ вторая\ лодка.\]
\[Пусть\ x\ \frac{км}{ч} - скорость\ \]
\[первой\ лодки\ в\ стоячей\ \]
\[воде,\ а\ y\ \frac{км}{ч} -\]
\[собственная\ скорость\ второй\ \]
\[лодки\ и\ y = \frac{3}{4}x.\ По\ условию\]
\[\ известно,\ что\]
\[сначала\ они\ плыли\ 8\ км\ по\ \]
\[озеру,\ затем\ 5\ км\ по\ течению\]
\[\ реки\ и\ первая\]
\[лодка\ приплыла\ не\ позднее\ \]
\[9\frac{5}{6}\ ч,\ а\ вторая\ лодка\ не\]
\[\ раньше\ 10\frac{4}{6}\ ч.\ \]
\[Скорость\ течения\ равна\ \]
\[2\ \frac{км}{ч},\ получаем\ \]
\[неравенства:\]
\[\frac{8}{x} + \frac{5}{x + 2} \leq \frac{17}{6} - для\ первой\ \]
\[лодки;\]
\[\frac{8}{\frac{3}{4}x} + \frac{5}{\frac{3}{4}x + 2} \geq \frac{11}{3} - для\]
\[\ второй\ лодки.\]
\[Составляем\ систему\]
\[\ неравенств:\]
\[\left\{ \begin{matrix} \frac{8}{x} + \frac{5}{x + 2} \leq \frac{17}{6}\text{\ \ \ \ \ } \\ \frac{8}{\frac{3}{4}x} + \frac{5}{\frac{3}{4}x + 2} \geq \frac{11}{3} \\ \end{matrix} \right.\ \]
\[\frac{48 \cdot (x + 2) + 30x - 17x(x + 2)}{6x(x + 2)} \leq 0\]
\[48x + 96 + 30x - 17x^{2} -\]
\[- 34x \leq 0\]
\[- 17x^{2} + 44x + 96 \leq 0\]
\[17x^{2} - 44x - 96 \geq 0\]
\[D = 1936 + 6528 = 8464\]
\[x_{1} = \frac{44 - 92}{34} = - 1,4\]
\[x_{2} = \frac{44 + 92}{34} = 4\]
\[\frac{32}{3x} + \frac{5}{\frac{3x + 8}{4}} \geq \frac{11}{3}\]
\[\frac{32}{3x} + \frac{20}{3x + 8} - \frac{11}{3} \geq 0\]
\[\frac{32 \cdot (3x + 8) + 60x - 11x(3x + 8)}{3x(3x + 8)} \geq 0\]
\[96x + 256 + 60x - 33x^{2} -\]
\[- 88x \geq 0\]
\[33x^{2} - 68x - 256 \leq 0\]
\[D = 4624 + 33792 = 38416\]
\[x_{1} = \frac{68 - 196}{66} = - 1,9\]
\[x_{2} = \frac{68 + 196}{66} = 4\]
\[4\ \frac{км}{ч} - собственная\ \]
\[скорость\ первой\ лодки.\]
\[\frac{3}{4} \cdot 4 = 3\ \left( \frac{км}{ч} \right) - собственная\ \]
\[скорость\ второй\ лодки.\]
\[Ответ:4\frac{км}{ч};3\ \frac{км}{ч}.\]