Решебник по алгебре 9 класс Мерзляк Задание 507

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 507

Выбери издание
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021

\[\boxed{\mathbf{507\ (507).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[9\ ч\ 50\ мин = 9\frac{5}{6}\ ч\]

\[9\frac{5}{6}\ ч - 7ч = 2\frac{5}{6}\ ч =\]

\[= \frac{17}{6}\ ч - в\ пути\ первая\ лодка.\]

\[10\ ч\ 40\ мин = 10\frac{4}{6}\ ч\]

\[10\frac{4}{6}\ ч - 7\ ч = 3\frac{2}{3}\ ч =\]

\[= \frac{11}{3}\ ч - в\ пути\ вторая\ лодка.\]

\[Пусть\ x\ \frac{км}{ч} - скорость\ \]

\[первой\ лодки\ в\ стоячей\ \]

\[воде,\ а\ y\ \frac{км}{ч} -\]

\[собственная\ скорость\ второй\ \]

\[лодки\ и\ y = \frac{3}{4}x.\ По\ условию\]

\[\ известно,\ что\]

\[сначала\ они\ плыли\ 8\ км\ по\ \]

\[озеру,\ затем\ 5\ км\ по\ течению\]

\[\ реки\ и\ первая\]

\[лодка\ приплыла\ не\ позднее\ \]

\[9\frac{5}{6}\ ч,\ а\ вторая\ лодка\ не\]

\[\ раньше\ 10\frac{4}{6}\ ч.\ \]

\[Скорость\ течения\ равна\ \]

\[2\ \frac{км}{ч},\ получаем\ \]

\[неравенства:\]

\[\frac{8}{x} + \frac{5}{x + 2} \leq \frac{17}{6} - для\ первой\ \]

\[лодки;\]

\[\frac{8}{\frac{3}{4}x} + \frac{5}{\frac{3}{4}x + 2} \geq \frac{11}{3} - для\]

\[\ второй\ лодки.\]

\[Составляем\ систему\]

\[\ неравенств:\]

\[\left\{ \begin{matrix} \frac{8}{x} + \frac{5}{x + 2} \leq \frac{17}{6}\text{\ \ \ \ \ } \\ \frac{8}{\frac{3}{4}x} + \frac{5}{\frac{3}{4}x + 2} \geq \frac{11}{3} \\ \end{matrix} \right.\ \]

\[\frac{48 \cdot (x + 2) + 30x - 17x(x + 2)}{6x(x + 2)} \leq 0\]

\[48x + 96 + 30x - 17x^{2} -\]

\[- 34x \leq 0\]

\[- 17x^{2} + 44x + 96 \leq 0\]

\[17x^{2} - 44x - 96 \geq 0\]

\[D = 1936 + 6528 = 8464\]

\[x_{1} = \frac{44 - 92}{34} = - 1,4\]

\[x_{2} = \frac{44 + 92}{34} = 4\]

\[\frac{32}{3x} + \frac{5}{\frac{3x + 8}{4}} \geq \frac{11}{3}\]

\[\frac{32}{3x} + \frac{20}{3x + 8} - \frac{11}{3} \geq 0\]

\[\frac{32 \cdot (3x + 8) + 60x - 11x(3x + 8)}{3x(3x + 8)} \geq 0\]

\[96x + 256 + 60x - 33x^{2} -\]

\[- 88x \geq 0\]

\[33x^{2} - 68x - 256 \leq 0\]

\[D = 4624 + 33792 = 38416\]

\[x_{1} = \frac{68 - 196}{66} = - 1,9\]

\[x_{2} = \frac{68 + 196}{66} = 4\]

\[4\ \frac{км}{ч} - собственная\ \]

\[скорость\ первой\ лодки.\]

\[\frac{3}{4} \cdot 4 = 3\ \left( \frac{км}{ч} \right) - собственная\ \]

\[скорость\ второй\ лодки.\]

\[Ответ:4\frac{км}{ч};3\ \frac{км}{ч}.\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\text{507.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[1)\left\{ \begin{matrix} x^{2} - x - 6 \leq 0 \\ x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - x - 6 \leq 0\]

\(x_{1} + x_{2} = 1,\ \ \ \ \ \ \ \ \ \ \ x_{1} = 3\)

\[x_{1}x_{2} = - 6,\ \ x_{2} = - 2\]

\[\left\{ \begin{matrix} (x - 3)(x + 2) \leq 0 \\ x > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[Ответ:x \in (0;3\rbrack.\]

\[2)\ \left\{ \begin{matrix} 2x^{2} - 11x - 6 \geq 0 \\ x + 4 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[1)\ 2x^{2} - 11x - 6 \geq 0\]

\[D = 169\]

\[x_{1,2} = \frac{11 \pm 13}{4}\]

\[x = - 0,5;\ \ \ x = 6\]

\[2)\ x + 4 \geq 0\]

\[x \geq - 4\]

\[\left\{ \begin{matrix} (x + 0,5)(x - 6) \geq 0 \\ x \geq - 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[Ответ:x \in \lbrack - 4;\ - 0,5\rbrack \cup \lbrack 6;\ + \infty).\]

\[3)\ \left\{ \begin{matrix} x^{2} - 9x - 10 \leq 0 \\ 6x - x^{2} < 0\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[1)\ x^{2} - 9x - 10 \leq 0\]

\(x_{1} + x_{2} = 9,\ \ \ \ \ \ \ \ \ \ \ x_{1} = - 1\)

\[x_{1}x_{2} = - 10,\ \ x_{2} = 10\]

\[2)\ 6x - x^{2} < 0\]

\[x(6 - x) < 0\]

\[x_{1} = 0,\ \ x_{2} = 6\]

\[\left\{ \begin{matrix} (x + 1)(x - 10) \leq 0 \\ x(6 - x) < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[Ответ:x \in \lbrack - 1;0) \cup (6;10\rbrack.\]

\[4)\ \left\{ \begin{matrix} x^{2} - x - 12 \geq 0 \\ x^{2} + 3x - 10 < 0 \\ \end{matrix} \right.\ \]

\[1)\ x^{2} - x - 12 \geq 0\]

\(x_{1} + x_{2} = 1,\ \ \ \ \ \ \ \ \ \ \ x_{1} = 4\)

\[x_{1}x_{2} = - 12,\ \ x_{2} = - 3\]

\[2)\ x^{2} + 3x - 10 < 0\]

\(x_{1} + x_{2} = - 3,\ \ \ \ \ \ \ \ \ \ \ x_{1} = - 5\)

\[x_{1}x_{2} = - 10,\ \ x_{2} = 2\]

\[\left\{ \begin{matrix} (x + 3)(x - 4) \geq 0 \\ (x + 5)(x - 2) < 0 \\ \end{matrix} \right.\ \]

\[Ответ:x \in ( - 5; - 3\rbrack.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам