\[\boxed{\text{491\ (491).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ x\frac{км}{ч} - скорость\ по\ \]
\[течению,\ а\ y\ \frac{км}{ч} -\]
\[против\ течения,\]
\[тогда\ весь\ путь\ \frac{16}{x} + \frac{16}{y}\text{.\ }\]
\[Значит,\ \frac{1}{y}\ ч - время,\ за\ \]
\[которое\ турист\]
\[проплывает\ 1\ км\ против\ \]
\[течения,\ а\ \frac{2}{x}\ ч - 2\ км\ по\ \]
\[течению.\]
\[По\ условию\ известно,\ что\ \frac{2}{x} =\]
\[= \frac{1}{y}\ и\ что\ весь\ путь\ \]
\[занимает\ 6\ ч.\]
\[Составляем\ систему\ \]
\[уравнений:\]
\[\left\{ \begin{matrix} \frac{16}{x} + \frac{16}{y} = 6 \\ \frac{2}{x} = \frac{1}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{16}{x} + \frac{16}{y} = 6 \\ x = 2y\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{16}{2y} + \frac{16}{y} = 6 \\ x = 2y\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\frac{8}{y} + \frac{16}{y} = 6\]
\[\frac{24}{y} = 6\]
\[\left\{ \begin{matrix} y = 4 \\ x = 2y \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} y = 4 \\ x = 8 \\ \end{matrix} \right.\ \]
\[8\frac{км}{ч} - скорость\ по\ течению.\]
\[4\frac{км}{ч} - скорость\ \]
\[против\ течения.\]
\[\frac{x - y}{2} = \frac{8 - 4}{2} = 2\ \frac{км}{ч} -\]
\[скорость\ течения\ реки.\]
\[Ответ:2\frac{км}{ч}\text{.\ }\]
\[\boxed{\text{491.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[Решение\ квадратных\ \]
\[неравенств.\]
Решение.
\[1)\ x(x + 5) - 2 < 4x\]
\[x^{2} + 5x - 2 - 4x < 0\]
\[x^{2} + x - 2 < 0\]
\[x_{1} + x_{2} = - 1,\ \ x_{1} = - 2\]
\[x_{1}x_{2} = - 2,\ \ x_{2} = 1\]
\[(x - 1)(x + 2) > 0\]
\[Ответ:x \in ( - 2;1).\]
\[2)\ 11 - (x + 1)^{2} \leq x\]
\[11 - x^{2} - 2x - 1 - x \leq 0\]
\[- x^{2} - 3x + 10 \leq 0\]
\[x^{2} + 3x - 10 \geq 0\]
\[x_{1} + x_{2} = - 3,\ \ x_{1} = - 5\]
\[x_{1}x_{2} = - 10,\ \ x_{2} = 2\]
\[(x + 5)(x - 2) \geq 0\]
\[Ответ:x \in ( - \infty; - 5\rbrack \cup \lbrack 2;\ + \infty).\]
\[3)\ (2x + 1)^{2} -\]
\[- (x + 1)(x - 7) \leq 5\]
\[4x^{2} + 4x + 1 - x^{2} + 6x + 7 -\]
\[- 5 \leq 0\]
\[3x^{2} + 10x + 3 \leq 0\]
\[D = 100 - 36 = 64\]
\[x_{1,2} = \frac{- 10 \pm 8}{6};\ \ \ \]
\[\ x = - 3;\ \ \ x = - \frac{1}{3}\]
\[Ответ:x \in \left\lbrack - 3;\ - \frac{1}{3} \right\rbrack.\]
\[4)\ 5x(x + 4) -\]
\[- (2x - 3)(2x + 3) > 30\]
\[5x^{2} + 20x - 4x^{2} + 9 - 30 > 0\]
\[x^{2} + 20x - 21 > 0\]
\[x_{1} + x_{2} = - 20,\ \ x_{1} = - 21\]
\[x_{1}x_{2} = - 21,\ \ x_{2} = 1\]
\[Ответ:x \in ( - \infty;\ - 21) \cup (1;\ + \infty).\]
\[5)\ (3x - 7)(x + 2) -\]
\[- (x - 4)(x + 5) > 30\]
\[3x^{2} - x - 14 - x^{2} - x +\]
\[+ 20 - 30 > 0\]
\[2x^{2} - 2x - 24 > 0\ \ |\ :2\]
\[x^{2} - x - 12 > 0\]
\[x_{1} + x_{2} = 1,\ \ x_{1} = 4\]
\[x_{1}x_{2} = - 12,\ \ x_{2} = - 3\]
\[Ответ:x \in ( - \infty;\ - 3) \cup (4;\ + \infty).\]
\[6)\ \frac{2x^{2} - 1}{4} - \frac{3 - 4x}{6} +\]
\[+ \frac{8x - 5}{8} \leq \frac{19}{24}\ \ \ | \cdot 24\]
\[6 \cdot \left( 2x^{2} - 1 \right) - 4 \cdot (3 - 4x) +\]
\[+ 3 \cdot (8x - 5) - 19 \leq 0\]
\[12x^{2} - 6 - 12 + 16x + 24x -\]
\[- 15 - 19 \leq 0\]
\[12x^{2} + 40x - 52 \leq 0\ \ |\ :4\]
\[3x^{2} + 10x - 13 \leq 0\]
\[D = 100 + 156 = 256\]
\[x_{1,2} = \frac{- 10 \pm 16}{6}\]
\[x = 1;\ \ \ x = - 4\frac{1}{3}\]
\[Ответ:x \in \left\lbrack - 4\frac{1}{3};1 \right\rbrack.\]