Решебник по алгебре 9 класс Мерзляк Задание 473

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 473

\[\boxed{\text{473\ (473).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[1)\ \left\{ \begin{matrix} x^{2} + y^{2} = a \\ |y| = 1\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\left\{ \begin{matrix} y \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + 1 - a = 0 \\ \end{matrix} \right.\ \ \ \ \ \ и\ \]

\[\left\{ \begin{matrix} y < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + 1 - a = 0 \\ \end{matrix} \right.\ \]

\[Если\ a > 1,\ то\ система\ имеет\ \]

\[4\ решения,\ так\ как\ по\ 2\]

\[\ решения\ в\ каждой\]

\[системе.\]

\[Если\ a = 1,\ то\ 2\ решения\ \]

\[\left\{ \begin{matrix} x = 0 \\ y = 1 \\ \end{matrix} \right.\ \ \ и\ \ \left\{ \begin{matrix} x = 0\ \ \ \\ y = - 1 \\ \end{matrix} \right.\ .\]

\[Если\ a < 1,\ то\ нет\ решений.\]

\[Ответ:\ a > 1 - \ 4\ решения;\]

\[a = 1 - 2решения;\]

\[a < 1 - нет\ решений.\ \]

\[2)\ \left\{ \begin{matrix} x^{2} + y^{2} = 9 \\ y = a - |x| \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x \geq 0\ \ \ \ \ \ \ \ \ \ \ \\ y = a - x\ \ \ \ \\ x^{2} + y^{2} = 9 \\ \end{matrix} \right.\ \text{\ \ \ }и\ \ \left\{ \begin{matrix} x < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = a + x\ \ \ \ \\ x^{2} + y^{2} = 9 \\ \end{matrix} \right.\ \ \]

\[\ \left\{ \begin{matrix} x \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = a - x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + a^{2} - 2ax + x^{2} - 9 = 0 \\ \end{matrix} \right.\ \]

\[2x^{2} - 2ax + a^{2} - 9 = 0\]

\[D = 4a^{2} - 8a^{2} + 72 =\]

\[= - 4a^{2} + 72\]

\[x_{1,2} = \frac{2a \pm \sqrt{- 4a^{2} + 72}}{4} =\]

\[= \frac{a \pm \sqrt{18 - a^{2}}}{2}\]

\[\left\{ \begin{matrix} x < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = a + x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + a^{2} + 2ax + x^{2} - 9 = 0 \\ \end{matrix} \right.\ \]

\[D = 4a^{2} - 8a^{2} + 72 =\]

\[= - 4a^{2} + 72\]

\[x_{1,2} = \frac{- 2a \pm \sqrt{- 4a^{2} + 72}}{4} =\]

\[= \frac{- a \pm \sqrt{18 - a^{2}}}{2}\]

\[18 - a^{2} \geq 0,\ \ a^{2} \leq 18,\]

\[\ \ a \in \left\lbrack - 3\sqrt{2};3\sqrt{2} \right\rbrack\]

\[Если\ a > 3\sqrt{2},\ то\]

\[\ \sqrt{18 - a^{2}} < 0 - нет\ решений.\]

\[Если\ a = 3\sqrt{2},то\]

\[\ \left\{ \begin{matrix} x = 3\sqrt{2} \\ y = 0 \\ \end{matrix} \right.\ \ \ и\ \left\{ \begin{matrix} x = - 3\sqrt{2} \\ y = 0 \\ \end{matrix} \right.\ .\]

\[Если\ a < - 3,\ то\ решений\ нет.\]

\[Если\ a = 3,\ то\ 3\ решения;\]

\[если\ a = - 3,\ то\ 1\ решение;\]

\[если\ 3 < a < 3\sqrt{2},\ \]

\[то\ 4\ решения.\]

\[3)\ \left\{ \begin{matrix} x^{2} + y^{2} = a^{2} \\ xy = 4\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} \frac{16}{y^{2}} + y^{2} - a^{2} = 0 \\ x = \frac{4}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[16 + y^{4} - a^{2}y^{2} = 0\]

\[Пусть\ y^{2} = t,\ \ \]

\[то\ t^{2} - a^{2}t + 16 = 0\]

\[D = a^{4} - 64\]

\[D = 0,\ \ a^{4} = 64,\ \ \]

\[a = \pm 2\sqrt{2} - два\ решения.\]

\[D > 0,\ \ a^{4} > 64,\]

\[\text{\ \ }\left( a^{2} - 8 \right)\left( a^{2} + 8 \right) > 0,\]

\[a < - 2\sqrt{2}\ или\ \]

\[a > 2\sqrt{2} - 4\ решения.\]

\[D < 0,\ \ a^{4} < 64,\ \ \]

\[\left( a^{2} - 8 \right)\left( a^{2} + 8 \right) < 0,\]

\[- 2\sqrt{2} < a < 2\sqrt{2} - нет\]

\[\ решений.\]

\[Ответ:a = \pm 2\sqrt{2} - два\ \]

\[решения,\ a < - 2\sqrt{2}\ или\]

\[\ a > 2\sqrt{2} - 4\ решения,\]

\[- 2\sqrt{2} < a < 2\sqrt{2} - нет\]

\[\ решений.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам