\[\boxed{\text{434\ (434).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (x - 3)\sqrt{14 + 5x - x^{2}} > 0\]
\[\left\{ \begin{matrix} x - 3 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 14 + 5x - x^{2} > 0 \\ \end{matrix} \right.\ \]
\[1)\ x - 3 > 0\]
\[x > 3\]
\[2)\ 14 + 5x - x^{2} > 0\]
\(x_{1} + x_{2} = 5,\ \ \ \ \ \ \ \ \ \ \ x_{1} = 7\)
\[x_{1}x_{2} = - 14,\ \ x_{2} = - 2\]
\[Ответ:x \in (3;7).\]
\[2)\ (x - 3)\sqrt{14 + 5x - x^{2}} \geq 0\]
\[\left\{ \begin{matrix} x - 3 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 14 + 5x - x^{2} \geq 0 \\ \end{matrix} \right.\ \]
\[1)\ x - 3 \geq 0\]
\[x \geq 3\]
\[2)\ - x^{2} + 5x + 14 \geq 0\]
\[x_{1} = 7,\ \ x_{2} = - 2\]
\[Ответ:x \in \lbrack 3;7\rbrack.\]
\[3)\ (x - 3)\sqrt{14 + 5x - x^{2}} < 0\]
\[\left\{ \begin{matrix} x - 3 < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 14 + 5x - x^{2} > 0 \\ \end{matrix} \right.\ \ \]
\[1)\ x - 3 < 0\]
\[x < 3\]
\[2)\ 14 + 5x - x^{2} > 0\]
\[Ответ:x \in ( - 2;3).\]
\[4)\ (x - 3)\sqrt{14 + 5x - x^{2}} \leq 0\]
\[\left\{ \begin{matrix} x - 3 \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 14 + 5x - x^{2} \geq 0 \\ \end{matrix} \right.\ \]
\[1)\ x - 3 \leq 0\]
\[x \leq 3\]
\[2)\ 14 + 5x - x^{2} \geq 0\]
\[x_{1} = - 2;\ \ \ \ x_{2} = 7\]
\[Ответ:x \in \lbrack - 2;3\rbrack.\]
\[\boxed{\text{434.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[x^{2} - 3x - 1 = - \frac{3}{x}\]
\[y = x^{2} - 3x - 1\]
\[x_{0} = \frac{3}{2} = 1,5\]
\[y_{0} = - \frac{13}{4} = - 3\frac{1}{4}\]
\[Oy:\ \ x = 0,\ \ y = - 1\]
\[y = - \frac{3}{x}\]
\[x\] | \[1\] | \[3\] | \[- 1\] | \[- 3\] | \[6\] | \[- 6\] |
---|---|---|---|---|---|---|
\[y\] | \[- 3\] | \[- 1\] | \[3\] | \[1\] | \[- 0,5\] | \[0,5\] |
\[Ответ:\ x = - 1;x = 1;x = 3.\]