\[\boxed{\text{433\ (433).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)(x + 4)\sqrt{x^{2} - 2x - 15} > 0\]
\[\left\{ \begin{matrix} x + 4 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 2x - 15 > 0 \\ \end{matrix} \right.\ \]
\[1)\ x + 4 > 0\]
\[x > - 4\]
\[2)\ x^{2} - 2x - 15 > 0\]
\(x_{1} + x_{2} = 2,\ \ \ \ \ \ \ \ \ \ \ x_{1} = 5\)
\[x_{1}x_{2} = - 15,\ \ x_{2} = - 3\]
\[Ответ:x \in ( - 4;\ - 3) \cup (5;\ + \infty).\]
\[2)\ (x + 4)\sqrt{x^{2} - 2x - 15} \geq 0\]
\[\left\{ \begin{matrix} x + 4 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 2x - 15 \geq 0 \\ \end{matrix} \right.\ \]
\[1)\ x + 4 \geq 0\]
\[x \geq - 4\]
\[2)\ x^{2} - 2x - 15 \geq 0\]
\[x_{1} = 5,\ \ x_{2} = - 3\]
\[Ответ:x \in \lbrack - 4;\ - 3\rbrack \cup \lbrack 5;\ + \infty).\]
\[3)\ (x + 4)\sqrt{x^{2} - 2x - 15} < 0\]
\[\left\{ \begin{matrix} x^{2} - 2x - 15 > 0 \\ x + 4 < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[1)\ x + 4 < 0\]
\[x < - 4\]
\[2)\ x^{2} - 2x - 15 > 0\]
\[x_{1} = 5,\ \ x_{2} = - 3\]
\[Ответ:x \in ( - \infty;\ - 4).\]
\[4)\ (x + 4)\sqrt{x^{2} - 2x - 15} \leq 0\]
\[\left\{ \begin{matrix} x + 4 \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} - 2x - 15 \geq 0 \\ \end{matrix} \right.\ \]
\[1)\ x + 4 \leq 0\]
\[x \leq - 4\]
\[2)\ x^{2} - 2x - 15 \geq 0\]
\[x_{1} = 5,\ \ x_{2} = - 3\]
\[Ответ:x \in ( - \infty;\ - 4\rbrack.\]
\[\boxed{\text{433.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = 3x^{2} - 6x\]
\[x_{0} = \frac{6}{6} = 1\]
\[y_{0} = 3 - 6 = - 3\]
\[Ox:\ \ \ 3x(x - 2) = 0\]
\[x = 0,\ \ (0;0)\]
\[x = 2,\ \ (2;0)\]
\[\text{Oy}:\ \ x = 0,\ \ y = 0\]
\[f( - 1) = 3 + 6 = 9\]
\[1)\ E(y) = \lbrack - 3; + \infty)\]
\[2)\ ( - \infty;1\rbrack\]
\[3)\ x \in ( - \infty;0\rbrack \cup \lbrack 2;\ + \infty)\]