\[\boxed{\text{414\ (414).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
\[Решение\ квадратных\ \]
\[неравенств.\]
Решение.
\[1)\ x^{2} + 5x \leq 0\]
\[x(x + 5) \leq 0\]
\[x_{1} = 0,\ \ x_{2} = - 5\]
\[x \in \lbrack - 5;0\rbrack.\]
\[Ответ:\ x = - 5;\ - 4;\ - 3;\ \]
\[- 2;\ - 1;0.\]
\[2)\ x^{2} - 10 < 0\]
\[\left( x - \sqrt{10} \right)\left( x + \sqrt{10} \right) < 0\]
\[x_{1,2} = \pm \sqrt{10}\]
\[x \in \left( - \sqrt{10};\sqrt{10} \right).\]
\[Ответ:\ x = - 3;\ - 2;\ - 1;0;1;\]
\[2;3.\]
\[3)\ 6x^{2} + x - 2 \leq 0\]
\[D = 1 + 48 = 49\]
\[x_{1,2} = \frac{- 1 \pm 7}{12}\]
\[x = - \frac{2}{3};\ \ \ x = 0,5\]
\[x \in \left\lbrack - \frac{2}{3};0,5 \right\rbrack.\]
\[Ответ:x = 0.\]
\[4) - \frac{1}{4}x^{2} + x + 3 > 0\ | \cdot ( - 4)\]
\[x^{2} - 4x - 12 < 0\]
\[x_{1} + x_{2} = 4,\ \ x_{1} = 6\]
\[x_{1}x_{2} = - 12,\ \ x_{2} = - 2\]
\[x \in ( - 2;6).\]
\[Ответ:\ x = - 1;0;1;2;3;4;5.\ \]