\[\boxed{\text{380\ (380).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ c = 0:\]
\[y = ax^{2} + bx.\]
\[( - 4;0):\]
\[( - 4)^{2} \cdot a - 4b = 0\]
\[16a = 4b\]
\[b = 4a.\]
\[(1;5):\]
\[1 \cdot a + b = 5\]
\[a + b = 5\]
\[a + 4a = 5\]
\[5a = 5\]
\[a = 1 \rightarrow b = 4.\]
\[Исходная\ функция:\]
\[y = x^{2} + 4x.\]
\[Найдем\ вершину\ данной\]
\[\ параболы:\]
\[x_{0} = - \frac{b}{2a} = - \frac{4}{2} = - 2.\]
\[y_{0} = ( - 2)^{2} + 4 \cdot ( - 2) =\]
\[= 4 - 8 = - 4.\]
\[Ответ:\ \ y = - 4.\]
\[\textbf{б)}\ c = - 5:\]
\[y = ax^{2} + bx - 5.\]
\[(1;0):\]
\[a \cdot 1 + b - 5 = 0\]
\[a + b = 5\]
\[b = 5 - a.\]
\[(2;3):\]
\[a \cdot 2^{2} + 2b - 5 = 3\]
\[4a + 2b = 8\ \ \ \ |\ :2\]
\[2a + b = 4\]
\[2a + 5 - a = 4\]
\[a = - 1 \rightarrow b = 5 - ( - 1) = 6.\]
\[Исходная\ функция:\]
\[y = - x^{2} + 6x - 5.\]
\[Найдем\ вершину\ данной\ \]
\[параболы:\]
\[x_{0} = - \frac{b}{2a} = \frac{6}{2} = 3;\]
\[y_{0} = - 9 + 18 - 5 = 4.\]
\[Ответ:\ \ y = 4.\ \]