\[\boxed{\text{358\ (358).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = 2x^{2} - 12x + 8\]
\[a = 2 > 0 - ветви\ вверх.\]
\[x_{0} = \frac{12}{4} = 3;\]
\[y_{0} = 2 \cdot 9 - 36 + 8 = - 10.\]
\[(3; - 10) - вершина\ параболы.\]
\[E(y) = \lbrack - 10;\ + \infty);\]
\[убывает:\ \ ( - \infty;3\rbrack,\ \ \ \]
\[возрастает\ \lbrack 3;\ + \infty).\]
\[2)\ f(x) = 9 + 8x - 0,2x^{2}\]
\[a = - 0,2 < 0 - ветви\ вниз.\]
\[x_{0} = \frac{- 8}{- 0,4} = 20;\]
\[y_{0} = 9 + 160 - 80 = 9.\]
\[(20;9) - вершина\ параболы.\]
\[E(y) = ( - \infty;89\rbrack;\]
\[возрастает:( - \infty;20\rbrack,\ \ \ \]
\[убывает:\lbrack 20; + \infty).\]
\[\boxed{\text{358.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ y = 5x - 15\]
\[нули\ функции:\]
\[5x - 15 = 0\]
\[5x = 15\]
\[x = 3.\]
\[возрастает\ на\ ( - \infty; + \infty).\]
\[Ответ:f(x) < 0\ на\ ( - \infty;3);\]
\[f(x) > 0\ на\ (3;\ + \infty).\]
\[2)\ y = - 7x - 28\]
\[нули\ функции:\]
\[- 7x - 28 = 0\]
\[- 7x = 28\]
\[x = - 4.\]
\[\ убывает\ на\ ( - \infty; + \infty)\]
\[Ответ:f(x) > 0\ на\ ( - \infty; - 4);\]
\[f(x) < 0\ на\ ( - 4;\ + \infty).\]
\[3)\ y = x^{2} - 2x + 1\]
\[нули\ функции:\]
\[x^{2} - 2x + 1 = 0\]
\[(x - 1)^{2} = 0\]
\[x = 1.\]
\[x_{1} = - 1;\ \ \ \ \ \ \ y_{1} = 1 + 2 + 1 = 4\]
\[x_{2} = 0;\ \ \ \ \ \ \ \ \ \ \ y_{2} = 1\]
\[x_{1} < x_{2};\ \ \ y_{1} > y_{2}\ \rightarrow \ \]
\[\rightarrow убывает\ на\ ( - \infty;1).\]
\[x_{1} = 2:\ \]
\[y_{1} = 4 - 4 + 1 = 1.\]
\[x_{2} = 3:\]
\[y_{2} = 9 - 6 + 1 = 4.\]
\[x_{2} > x_{1};\ \ y_{1} < y_{2}\ \rightarrow \ \]
\[\rightarrow возрастает\ на\ (1;\ + \infty).\]
\[Ответ:f(x) > 0\ на\ ( - \infty; + \infty).\]
\[4)\ y = \frac{9}{3 - x}\]
\[3 - x \neq 0\]
\[x \neq 3.\]
\[\ \ убывает\ на\ ( - \infty; + \infty).\]
\[Ответ:f(x) > 0\ на\ ( - \infty;3);\]
\[f(x) < 0\ на\ (3; + \infty)\text{.\ }\]