\[\boxed{\text{343\ (343).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[y = - 6x^{2} + x + c\]
\[\text{M\ }(0;\ - 8):\]
\[- 6 \cdot 0 + 0 + c = - 8\]
\[c = - 8\]
\[Ответ:\ c = - 8.\]
\[\boxed{\text{343.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \frac{x^{2} - 16}{x + 4}\]
\[x + 4 \neq 0\]
\[x \neq - 4\]
\[D(f) = ( - \infty; - 4) \cup ( - 4; + \infty).\]
\[\frac{x^{2} - 16}{x + 4} = \frac{(x + 4)(x - 4)}{(x + 4)} =\]
\[= x - 4\]
\[y = x - 4\]
\[x\] | \[0\] | \[2\] |
---|---|---|
\[y\] | \[- 4\] | \[- 2\] |
\[2)\ f(x) = \frac{12x - 72}{x^{2} - 6x}\]
\[x^{2} - 6x \neq 0\]
\[x \cdot (x - 6) \neq 0\]
\[x \neq 0\]
\[x \neq 6.\]
\[D(f) =\]
\[= ( - \infty;0) \cup (0;6) \cup (6; + \infty).\]
\[\frac{12x - 72}{x(x - 6)} = \frac{12 \cdot (x - 6)}{x \cdot (x - 6)} = \frac{12}{x}\]
\[y = \frac{12}{x}\]
\[x\] | \[2\] | \[3\] | \[4\] | \[- 2\] | \[- 3\] | \[- 4\] | \[- 6\] |
---|---|---|---|---|---|---|---|
\[y\] | \[6\] | \[4\] | \[3\] | \[- 6\] | \[- 4\] | \[- 3\] | \[- 2\] |
\[3)\ f(x) = \frac{x^{2} - 9}{x^{2} - 9}\]
\[x^{2} - 9 \neq 0\]
\[x \neq 3\]
\[x \neq - 3.\]
\[D(f) =\]
\[= ( - \infty; - 3) \cup ( - 3;3) \cup (3; + \infty).\]
\[\frac{x^{2} - 9}{x^{2} - 9} = 1\]
\[y = 1\]
\(\ \)
\[4)\ \ f(x) = \frac{x^{3} - 4x}{x^{2} - 2x} = \frac{x\left( x^{2} - 4 \right)}{x(x - 2)} =\]
\[= \frac{(x - 2)(x + 2)}{x - 2} = x + 2;\ \]
\[\ x \neq 0;\ \ x \neq 2\]