\[\boxed{\text{342\ (342).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[f(x) = x^{2} - 2x - 15\]
\[1)\ x^{2} - 2x - 15 = 0\]
\[x_{1}{+ x}_{2} = 2,\ \ x_{1} = 5\]
\[x_{1}x_{2} = - 15,\ \ x_{2} = - 3\]
\[Ответ:\ - 3;5.\]
\[2)\ x^{2} - 2x - 15 = - 7\]
\[x^{2} - 2x - 8 = 0\]
\[x_{1}{+ x}_{2} = 2,\ \ x_{1} = 4\]
\[x_{1}x_{2} = - 8,\ \ x_{2} = - 2\]
\[Ответ:4;\ - 2.\]
\[3)\ x^{2} - 2x - 15 = 33\]
\[x^{2} - 2x - 48 = 0\]
\[x_{1}{+ x}_{2} = 2,\ \ x_{1} = 8\]
\[x_{1}x_{2} = - 48,\ \ x_{2} = - 6\]
\[Ответ:8;\ - 6.\]
\[\boxed{\text{342.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ f(x) = \frac{x - 5}{(x - 2)(x - 1)}\]
\[2)\ f(x) = \frac{\sqrt{x - 5}}{x^{2} + 1}\]
\[3)\ f(x) = \frac{\sqrt{10 - x}}{5 \cdot (x + 1)}\]
\[4)\ f(x) = \sqrt{x + 4} + \sqrt{- 4 - x}\ \]