\[\boxed{\text{286\ (286).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left\{ \begin{matrix} y = 3x^{2} \\ y = 300 \\ \end{matrix} \right.\ \]
\[3x^{2} = 300\]
\[x^{2} = 100\]
\[x = \pm 10.\]
\[Ответ:(10;300);( - 10;300) -\]
\[точки\ пересечения\ графиков.\]
\[2)\ \left\{ \begin{matrix} y = 3x^{2} \\ y = 42x \\ \end{matrix} \right.\ \]
\[3x^{2} = 42x\]
\[3x^{2} - 42x = 0\]
\[3x(x - 14) = 0\]
\[x = 0;\ \ \ \ \ x = 14.\]
\[y = 0;\ \ \ \ y = 42 \cdot 14 = 588.\]
\[Ответ:(0;0);(14;588) -\]
\[точки\ пересечения\ графиков.\]
\[3)\ \left\{ \begin{matrix} y = 3x^{2}\text{\ \ \ \ \ \ } \\ y = - 150x \\ \end{matrix} \right.\ \]
\[3x^{2} = - 150x\]
\[3x^{2} + 150x = 0\]
\[3x(x + 50) = 0\]
\[x = 0;\ \ \ \ \ \ \ \ \ x = - 50\]
\[y = 0;\ \ \ \ \ \ \ \ y = 3 \cdot 2500 = 7\ 500\]
\[Ответ:(0;0);( - 50;7500) -\]
\[точки\ пересечения\ графиков.\]
\[4)\ \left\{ \begin{matrix} y = 3x^{2}\text{\ \ \ \ } \\ y = 6 - 3x \\ \end{matrix} \right.\ \]
\[3x^{2} = 6 - 3x\]
\[3x^{2} + 3x - 6 = 0\ \ \ \ \ |\ :3\]
\[x^{2} + x - 2 = 0\]
\[x_{1} + x_{2} = - 1,\ \ x_{1} = - 2\]
\[x_{1}x_{2} = - 2,\ \ x_{2} = 1.\]
\[y_{1} = 3 \cdot 4 = 12;\]
\[y_{2} = 3 \cdot 1 = 3.\]
\[Ответ:( - 2;12);(1;3) -\]
\[точки\ пересечения\ графиков.\ \]