\[\boxed{\text{268\ (268).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[f(x) = \left\{ \begin{matrix} \begin{matrix} 2x + 8,\ \ x \leq - 2 \\ x^{2},\ \ - 2 < x < 2 \\ \end{matrix} \\ - 2x + 8,\ \ x \geq 2 \\ \end{matrix} \right.\ \]
\[y = 2x + 8\]
\[x\] | \[- 2\] | \[- 3\] |
---|---|---|
\[y\] | \[4\] | \[2\] |
\[y = x^{2}\]
\[x\] | \[0\] | \[1\] | \[- 1\] | \[2\] | \[- 2\] |
---|---|---|---|---|---|
\[y\] | \[0\] | \[1\] | \[1\] | \[4\] | \[4\] |
\[y = - 2x + 8\]
\[x\] | \[2\] | \[3\] |
---|---|---|
\[y\] | \[4\] | \[2\] |
\[Нули\ функции:x = - 4,\ x = 0,\]
\[\ x = 4.\]
\[f(x) > 0\ на\ ( - 4;0)\ и\ (0;4).\]
\[f(x) < 0\ на\ ( - \infty;\ - 4)\ и\ \]
\[(4;\ + \infty).\]
\[возрастает\ на\ ( - \infty;\ - 2\rbrack\ и\ (0;2\rbrack.\]
\[убывает\ на\ \lbrack - 2;0)\ и\ \lbrack 2;\ + \infty)\text{.\ }\]
\[\boxed{\mathbf{268.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{12 - 6x} - \frac{4}{x + 3}\]
\[\left\{ \begin{matrix} 12 - 6x \geq 0 \\ x + 3 \neq 0\ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} - 6x \geq - 12 \\ x \neq - 3\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x \leq 2\ \ \ \\ x \neq - 3 \\ \end{matrix} \right.\ \]
\[D(y) = ( - \infty; - 3) \cup ( - 3;2\rbrack.\]
\[2)\ \frac{x}{\sqrt{4x + 20}} + \frac{x + 1}{x^{2} - 2x}\]
\[\left\{ \begin{matrix} 4x + 20 > 0 \\ x^{2} - 2x \neq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 4x > - 20\ \ \ \ \ \ \\ x(x - 2) \neq 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 5 \\ x \neq 0\ \ \ \\ x \neq 2\ \ \ \\ \end{matrix} \right.\ \]
\[D(y) = ( - 5;0) \cup (0;2) \cup (2; + \infty).\]