\[\boxed{\text{244\ (244).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \sqrt{x} - 1\]
\[y = \sqrt{x},\ \ E(y) = \lbrack 0; + \infty)\]
\[y = \sqrt{x} - 1,\ \ \]
\[E(y) = \lbrack - 1; + \infty)\]
\[Ответ:\lbrack - 1;\ + \infty).\]
\[2)\ f(x) = 5 - x^{2}\]
\[y = x^{2},\ \ E(y) = \lbrack 0; + \infty)\]
\[y = - x^{2},\ \ E(y) = ( - \infty;0\rbrack\]
\[y = - x^{2} + 5,\ \ \]
\[E(y) = ( - \infty;5\rbrack\]
\[Ответ:( - \infty;5\rbrack.\]
\[3)\ f(x) = - 7,\ \ E(f) = - 7\]
\[Ответ:\left\{ - 7 \right\}.\]
\[4)\ f(x) = |x| + 2\]
\[y = |x|,\ \ E(y) = \lbrack 0;\ + \infty)\]
\[y = |x| + 2,\ \ E(y) = \lbrack 2;\ + \infty)\]
\[Ответ:\lbrack 2; + \infty).\]
\[5)\ f(x) = \sqrt{- x^{2}}\]
\[D(f) = - x^{2} \geq 0\]
\[x = 0\]
\[E(f) = 0\]
\[Ответ:\left\{ 0 \right\}.\]
\[6)\ f(x) = \sqrt{x - 2} + \sqrt{2 - x}\]
\[D(f) = \left\{ \begin{matrix} x - 2 \geq 0 \\ 2 - x \geq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x \geq 2 \\ x \leq 2 \\ \end{matrix} \right.\ \]
\[x = 2,\ \ y = 0\]
\[E(f) = 0\]
\[Ответ:\left\{ 0 \right\}\text{.\ \ }\]
\[\boxed{\mathbf{244.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ x\ кг\ кислоты\ отлили,\ \ \]
\[\ тогда\ после\ того,\ как\ \]
\[долили\ воды,\ кислоты\ \]
\[стало\ (12 - x)\ кг.\ Значит,\ после\]
\[\ второго\ отливания\ кислоты,\ \]
\[ее\ осталось\]
\[\left( 12 - x - \frac{x}{2} \right)\ кг.\ Тогда\]
\[\ \frac{12 - 1,5x}{12} \cdot 100\% -\]
\[содержание\ кислоты.\]
\[По\ условию\ известно,\ что\ \]
\[содержание\ кислоты\]
\[\ стало\ 25\%.\]
\[Составляем\ уравнение:\]
\[\frac{12 - 1,5x}{12} \cdot 100\% = 25\%\]
\[\frac{12 - 1,5x}{12} = \frac{1}{4}\]
\[12 - 1,5x = 3\]
\[1,5x = 9\]
\[x = 6\ (кг) - жидкости\]
\[\ отливали\ каждый\ раз.\]
\[Ответ:6\ кг.\]