\[\boxed{\text{243}\text{\ (243)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ f(x) = \sqrt{x + 4} + \frac{2}{x + 1}\]
\[\left\{ \begin{matrix} x + 4 \geq 0 \\ x + 1 \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x \geq - 4 \\ x \neq - 1 \\ \end{matrix} \right.\ \]
\[Ответ:D(f) =\]
\[= \lbrack - 4;\ - 1) \cup ( - 1;\ + \infty).\]
\[2)\ f(x) = \sqrt{8 - x} + \frac{4}{x^{2} - 8x}\]
\[\left\{ \begin{matrix} 8 - x \geq 0\ \ \ \ \\ x^{2} - 8x \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} x \leq 8\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x(x - 8) \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x \leq 8 \\ x \neq 0 \\ x \neq 8 \\ \end{matrix} \right.\ \]
\[\ Ответ:D(f) = ( - \infty;0) \cup (0;8)\text{.\ }\]