\[\boxed{\text{144\ (144).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ \text{x\ }км - мог\ проплыть\ \]
\[турист\ по\ течению\ реки,\ \]
\[тогда\ \frac{x}{(5 + 1)}\ ч -\]
\[время\ на\ путь\ по\ течению,\ \]
\[а\ \frac{x}{(5 - 1)}\ ч - время\ на\ путь\ \]
\[против\ течения.\]
\[По\ условию\ известно,\ что\ \]
\[общее\ время\ заняло\ не\ \]
\[более\ 5\ часов.\]
\[Составляем\ уравнение:\]
\[\frac{x^{\backslash 2}}{6} + \frac{x^{\backslash 3}}{4} \leq 5\]
\[\frac{2x + 3x}{12} \leq 5\ \ | \cdot 12\]
\[5x \leq 60\]
\[x \leq 12\]
\[12\ (км) - максимальное\ \]
\[расстояние,\ которое\ мог\ \]
\[проплыть\ турист\ \]
\[по\ течению\ реки.\]
\[Ответ:12\ км.\]
\[\boxed{\mathbf{144.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x - 6\sqrt{x} + 8 = 0\]
\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} - 6t + 8 = 0 \\ \end{matrix} \right.\ \text{\ \ }\]
\[t_{1} + t_{2} = 6,\ \ t_{1} \cdot t_{2} = 8,\ \]
\[\ t_{1} = 4,\ \ t_{2} = 2\]
\[Ответ:x = 16;x = 4.\]
\[2)\ x - 5\sqrt{x} - 50 = 0\]
\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} - 5t - 50 = 0 \\ \end{matrix} \right.\ \]
\[t_{1} + t_{2} = 5,\ \ t_{1} \cdot t_{2} = - 50,\ \ \]
\[t_{1} = 10,\ \ t_{2} = - 5\]
\[\left\{ \begin{matrix} \sqrt{x} = t \\ t = 10 \\ t = - 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} \sqrt{x} = 10 \\ \sqrt{x} = - 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]
\[x = 100\]
\[Ответ:x = 100.\]
\[3)\ 2x - 3\sqrt{x} + 1 = 0\]
\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2t^{2} - 3t + 1 = 0 \\ \end{matrix} \right.\ \text{\ \ }\]
\[D = 9 - 8 = 1\]
\[\text{\ \ }t_{1,2} = \frac{3 \pm 1}{4}\]
\[Ответ:x = 1;x = \frac{1}{4}.\]