Решебник по алгебре 9 класс Мерзляк Задание 143

Авторы:
Год:2023
Тип:учебник
Серия:Алгоритм успеха

Задание 143

Выбери издание
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 9 класс Мерзляк, Полонский, Якир Вентана-Граф 2019-2020-2021

\[\boxed{\text{143\ (143).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[1)\ 3x^{2} - 6x + b = 0\]

\[Квадратное\ уравнение\ имеет\ \]

\[два\ различных\ корня\ \]

\[при\ D > 0.\]

\[D = 36 - 12b\]

\[36 - 12b > 0\]

\[36 > 12b\]

\[b < 3\]

\[Ответ:имеет\ два\ различных\ \]

\[корня\ при\ b \in ( - \infty;3).\]

\[2)\ x^{2} - x - 2b = 0\ \]

\[Квадратное\ уравнение\ не\ \]

\[имеет\ корней\ при\ D < 0.\]

\[D = 1 + 8b\]

\[1 + 8b < 0\]

\[8b < - 1\]

\[b < - \frac{1}{8}\]

\[Ответ:уравнение\ не\ имеет\ \]

\[корней\ при\ b \in \left( - \infty;\ - \frac{1}{8} \right).\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{143.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ x - 3\sqrt{x} + 2 = 0\]

\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} - 3t + 2 = 0 \\ \end{matrix} \right.\ \ \]

\[t_{1} + t_{2} = 3,\ \ t_{1} \cdot t_{2} = 2,\ \ \]

\[t_{1} = 2,\ \ t_{2} = 1\]

\[\left\{ \begin{matrix} \sqrt{x} = t \\ t = 2 \\ t = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} \sqrt{x} = 2 \\ \sqrt{x} = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x = 4 \\ x = 1 \\ \end{matrix} \right.\ \]

\[Ответ:x = 4;x = 1.\]

\[2)\ x - \sqrt{x} - 12 = 0\]

\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} - t - 12 = 0 \\ \end{matrix} \right.\ \ \]

\[t_{1} + t_{2} = 1,\ \ t_{1} \cdot t_{2} = - 12,\ \]

\[\ t_{1} = 4,\ \ t_{2} = - 3\]

\[Ответ:x = 16.\]

\[3)\ 3x - 10\sqrt{x} + 3 = 0\]

\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3t^{2} - 10t + 3 = 0 \\ \end{matrix} \right.\ \text{\ \ }\]

\[t_{1} + t_{2} = \frac{10}{3},\ \ t_{1} \cdot t_{2} = 1,\ \]

\[\ t_{1} = \frac{1}{3},\ \ t_{2} = 3\]

\[\left\{ \begin{matrix} \sqrt{x} = t \\ t = 3 \\ t = \frac{1}{3} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} \sqrt{x} = 3 \\ \sqrt{x} = \frac{1}{3} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 9 \\ x = \frac{1}{9} \\ \end{matrix} \right.\ \]

\[Ответ:x = 9;x = \frac{1}{9}.\]

\[4)\ 8\sqrt{x} + x + 7 = 0\]

\[\ \left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} + 8t + 7 = 0 \\ \end{matrix} \right.\ \text{\ \ }\]

\[t_{1} + t_{2} = - 8,\ \ t_{1} \cdot t_{2} = 7,\ \]

\[\ t_{1} = - 7,\ \ t_{2} = - 1\]

\[\left\{ \begin{matrix} \sqrt{x} = t \\ t = - 7 \\ t = - 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} \sqrt{x} = - 7 \\ \sqrt{x} = - 1 \\ \end{matrix} \right.\ \]

\[Ответ:нет\ корней.\]

\[5)\ 6\sqrt{x} - 27 + x = 0\]

\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ t^{2} + 6t - 27 = 0 \\ \end{matrix} \right.\ \]

\[\ t_{1} + t_{2} = - 6,\ \ t_{1} \cdot t_{2} = - 27,\]

\[\text{\ \ }t_{1} = - 9,\ \ t_{2} = 3\]

\[\left\{ \begin{matrix} \sqrt{x} = t \\ t = - 9 \\ t = 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} \sqrt{x} = - 9 \\ \sqrt{x} = 3 \\ \end{matrix} \right.\ ,\ \ \]

\[x = 9\]

\[Ответ:x = 9.\]

\[6)\ 8x - 10\sqrt{x} + 3 = 0\]

\[\left\{ \begin{matrix} \sqrt{x} = t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 8t^{2} - 10t + 3 = 0 \\ \end{matrix} \right.\ \]

\[D = 100 - 96 = 4,\ \ \]

\[t_{1,2} = \frac{10 \pm 2}{16}\]

\[Ответ:x = \frac{1}{4};x = \frac{9}{16}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам