\[\boxed{\text{139\ (139).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\frac{2 - 3x^{\backslash 10}}{4} \geq \frac{1^{\backslash 8}}{5} - \frac{5x + 6^{\backslash 5}}{8}\]
\[\frac{20 - 30x}{40} \geq \frac{8 - 25x - 30}{40}\ | \cdot 40\]
\[20 - 30x \geq - 25x - 22\]
\[- 5x \geq - 42\]
\[x \leq \frac{42}{5}\]
\[x \leq 8\frac{2}{5}\text{\ \ }\]
\[x \in ( - \infty;8,4\rbrack\]
\[x = \left\{ 1;2;3;4;5;6;7;8 \right\}.\]
\[Ответ:8.\]
\[\boxed{\mathbf{139.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \frac{48}{14 - x} - \frac{48}{14 + x} = 1\]
\[\frac{48}{14 - x} - \frac{48}{14 + x} - 1 = 0;\ \ \ \ \ \]
\[x \neq 14;\ \ \ \ x \neq - 14\]
\[x^{2} + 96x - 196 = 0\]
\[x_{1} + x_{2} = - 96,\ \ \]
\[x_{1}x_{2} = - 196,\ \]
\[\ x_{1} = 2,\ \ x_{2} = - 98\]
\[Ответ:\ x = - 98;x = 2.\]
\[2)\ \frac{x - 1}{x + 2} + \frac{x}{x - 2} = \frac{8}{x^{2} - 4}\]
\[(x - 1)(x - 2) + x(x + 2) - 8 =\]
\[= 0\]
\[x^{2} - x - 2x + 2 + x^{2} + 2x - 8 =\]
\[= 0\ \ \]
\[2x^{2} - x - 6 = 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 + 7}{4} = 2\ (не\ подходит);\ \ \ \ \ \ \]
\[x_{2} = \frac{1 - 7}{4} = - \frac{6}{4} = - 1,5\]
\[Ответ:\ x = - 1,5.\]
\[3)\ \frac{4x - 10}{x - 1} + \frac{x + 6}{x + 1} = 4\]
\[\frac{4x - 10}{x - 1} + \frac{x + 6}{x + 1} - 4 = 0;\ \ \ \ \]
\[x \neq 1;\ \ \ \ x \neq - 1\]
\[x^{2} - x - 12 = 0\]
\[x_{1} + x_{2} = 1,\ \ x_{1}x_{2} = - 12,\ \ \]
\[x_{1} = 4,\ \ x_{2} = - 3\]
\[Ответ:\ x = - 3;x = 4.\]
\[4)\ \frac{4}{x^{2} - 10x + 25} - \frac{1}{x + 5} =\]
\[= \frac{10}{x² - 25}\]
\[- x^{2} + 4x + 45 = 0\]
\[x^{2} - 4x - 45 = 0\]
\[x_{1} + x_{2} = 4;\ \ \ \ \ x_{1} \cdot x_{2} = 4 - 5\ \]
\[x_{1} = - 5\ (не\ подходит);\ \ \ \ \]
\[x_{2} = 9\]
\[Ответ:\ x = 9.\]