\[\boxed{\text{138\ (138).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[x^{\backslash 12} - \frac{x + 7^{\backslash 3}}{4} -\]
\[- \frac{11x + 30}{12} < \frac{x - 5^{\backslash 4}}{3}\]
\[\frac{12x - 3x - 21 - 11x - 30}{12} <\]
\[< \frac{4x - 20}{12}\ \ \ \ \ \ \ \ \ \ \ | \cdot 12\]
\[- 2x - 51 < 4x - 20\]
\[- 6x < 31\]
\[x > - 5\frac{1}{6}\text{\ \ }\]
\[x \in \left( - 5\frac{1}{6};\ + \infty \right)\]
\[x = \left\{ - 5; - 4; - 3; - 2; - 1 \right\}.\]
\[Ответ:5.\]
\[\boxed{\mathbf{138.\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ x^{4} - x^{2} = 0\]
\[x^{2}\left( x^{2} - 1 \right) = 0\]
\[x^{2}(x - 1)(x + 1) = 0\]
\[x = 0;\ \ x = \pm 1.\]
\[2)\ x^{3} - 100x = 0\]
\[x\left( x^{2} - 100 \right) = 0\]
\[x(x - 10)(x + 10) = 0\]
\[x = 0;\ \ x = \pm 10.\]
\[3)\ 7x^{3} - 14x = 0\]
\[7x\left( x^{2} - 2 \right) = 0\]
\[7x\left( x - \sqrt{2} \right)\left( x + \sqrt{2} \right) = 0\]
\[x = 0;\ \ \ x = \pm \sqrt{2}.\]
\[4)\ 64x^{3} + 16x^{2} + x = 0\]
\[x\left( 64x^{2} + 16x + 1 \right) = 0\]
\[x(8x + 1)^{2} = 0\]
\[64x\left( x + \frac{1}{8} \right)^{2} = 0\]
\[x = 0;\ \ x = - \frac{1}{8}.\]