\[\boxed{\mathbf{1041\ (1041).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ S = 4;\ \ q = \frac{1}{2}\]
\[S = \frac{b_{1}}{1 - q} \Longrightarrow b_{1} = S \cdot (1 - q) =\]
\[= 4 \cdot \left( 1 - \frac{1}{2} \right) = 4 \cdot \frac{1}{2} = 2;\]
\[2)\ S = \sqrt{2} + 1;\ \ q = \frac{\sqrt{2}}{2}\]
\[S = \frac{b_{1}}{1 - q} \Longrightarrow \ \]
\[b_{1} = S \cdot (1 - q) =\]
\[= \left( \sqrt{2} + 1 \right)\left( 1 - \frac{\sqrt{2}}{2} \right) =\]
\[= \left( \sqrt{2} + 1 \right) \cdot \frac{2 - \sqrt{2}}{2} =\]
\[= \frac{2\sqrt{2} - 2 + 2 - \sqrt{2}}{2} = \frac{\sqrt{2}}{2};\]
\[3)\ S = \frac{16}{3};\ \ S_{5} = 5,5\]
\[S = \frac{b_{1}}{1 - q} = \frac{16}{3},\]
\[\ \ 3b_{1} = 16 - 16q,\ \ \]
\[b_{1} = \frac{16}{3} \cdot (1 - q)\]
\[S_{5} = \frac{b_{1}(q^{5} - 1)}{q - 1} = 5,5\]
\[\frac{b_{1}(q^{5} - 1)}{q - 1} = \frac{11}{2}\]
\[\frac{\frac{16}{3} \cdot (1 - q)(q^{5} - 1)}{q - 1} = \frac{11}{2}\]
\[- \frac{16}{3} \cdot \left( q^{5} - 1 \right) = \frac{11}{2},\ \ \]
\[q^{5} - 1 = \frac{- 11 \cdot 3}{2 \cdot 16},\ \ \]
\[q^{5} - 1 = - \frac{33}{32}\]
\[q^{5} = 1 - \frac{33}{32},\ \ q^{5} = - \frac{1}{32},\]
\[\ \ q = - \frac{1}{2}\]
\[b_{1} = \frac{16}{3} \cdot \left( 1 + \frac{1}{2} \right) = \frac{16 \cdot 3}{3 \cdot 2} = 8.\]