Условие:
1. Решите систему уравнений
\[\left\{ \begin{matrix} x^{2} - 2xy - 3y^{2} = 0 \\ x^{2} + 2y^{2} = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
2. Найдите решение системы уравнений
\[\left\{ \begin{matrix} x + y + xy = 7 \\ x^{2} + y^{2} = 10\ \ \ \ \\ \end{matrix} \right.\ \]
3. Произведение двух натуральных чисел равно 187, а сумма их квадратов равна 410. Найдите эти числа.
4. На координатной плоскости изобразите множество решений уравнения |x|+2|y|=6. Найдите периметр полученной фигуры.
5. Изобразите на координатной плоскости множество решений неравенства x²+4x+y²-2y<=4. Найдите площадь полученной фигуры.
6. Изобразите на координатной плоскости множество решений системы неравенств. Найдите площадь полученной фигуры.
\[\left\{ \begin{matrix} x^{2} + y^{2} \leq 36 \\ y \leq |x|\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} x^{2} - 2xy - 3y^{2} = 0 \\ x^{2} + 2y^{2} = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \ ( + )\]
\[\left( x^{2} + 2xy + y^{2} \right) - 4y^{2} = 0\]
\[(x + y)^{2} - (2y)^{2} = 0\]
\[(x + y - 2y)(x + y + 2y) = 0\]
\[(x - y)(x + 3y) = 0\]
\[x = y;\ \ \ x = - 3y:\]
\[1)\ x = y:\]
\[y^{2} + 2y^{2} = 3\]
\[3y^{2} = 3\]
\[y^{2} = 1\]
\[y = \pm 1\]
\[\left\{ \begin{matrix} y = 1 \\ x = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x = - 1 \\ y = - 1 \\ \end{matrix} \right.\ \]
\[2)\ x = - 3y:\]
\[( - 3y)^{2} + 2y^{2} = 3\]
\[9y^{2} + 2y^{2} = 3\]
\[11y^{2} = 3\]
\[y^{2} = \frac{3}{11}\]
\[y = \pm \frac{\sqrt{3}}{\sqrt{11}} = \pm \frac{\sqrt{33}}{11}\]
\[\left\{ \begin{matrix} y = \frac{\sqrt{33}}{11}\text{\ \ \ \ \ \ \ } \\ x = - \frac{3\sqrt{33}}{11} \\ \end{matrix} \right.\ \text{\ \ \ }и\text{\ \ }\left\{ \begin{matrix} y = - \frac{\sqrt{33}}{11} \\ x = \frac{3\sqrt{33}}{11}\text{\ \ } \\ \end{matrix} \right.\ \]
\(Ответ:( - 1;\ - 1);(1;1);\)
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left( - \frac{3\sqrt{33}}{11};\frac{\sqrt{33}}{11} \right);\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\left( \frac{3\sqrt{33}}{11};\ - \frac{\sqrt{33}}{11} \right).\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} x + y + xy = 7 \\ x^{2} + y^{2} = 10\ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} + 2xy + y^{2} - 2xy = 10\]
\[(x + y)^{2} - 2xy = 10\]
\[\left\{ \begin{matrix} (x + y)^{2} - 2xy = 10 \\ x + y = 7 - xy\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(7 - xy)^{2} - 2xy = 10\]
\[49 - 14xy + \left( \text{xy} \right)^{2} = 10\]
\[\left( \text{xy} \right)^{2} - 16xy + 39 = 0\]
\[xy = t:\]
\[t^{2} - 16t + 39 = 0\]
\[D = 64 - 39 = 25\]
\[t_{1} = 8 + 5 = 13;\]
\[t_{2} = 8 - 5 = 3\]
\[1)\ xy = 9:\]
\[y = \frac{13}{x}\]
\[x^{\backslash x} + \frac{13}{x} + 13^{\backslash x} = 7^{\backslash x}\]
\[x^{2} + 6x + 13 = 0\]
\[D = 9 - 13 < 0\]
\[нет\ корней.\]
\[2)\ xy = 3:\]
\[y = \frac{3}{x}\]
\[x + \frac{3}{x} + 3 = 7\]
\[x^{\backslash x} + \frac{3}{x} - 4^{\backslash x} = 0\ \ \ \ \]
\[x^{2} - 4x + 3 = 0\]
\[D = 4 - 3 = 1\]
\[x_{1} = 2 - 1 = 1;\]
\[x_{2} = 2 + 1 = 3\]
\[\left\{ \begin{matrix} x = 1 \\ y = 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} x = 3 \\ y = 1 \\ \end{matrix} \right.\ \]
\[Ответ:(1;3);\ \ (3;1).\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[Пусть\ \text{x\ }и\ y - два\ натуральных\ \]
\[числа.\]
\[xy = 187;\]
\[x^{2} + y^{2} = 410.\]
\[Составим\ систему\ уравнения:\]
\[\left\{ \begin{matrix} xy = 187\ \ \ \ \ \ \ \ \ \ \\ x^{2} + y^{2} = 410 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = \frac{187}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \left( \frac{187}{y} \right)^{2} + y^{2} = 410 \\ \end{matrix} \right.\ \]
\[y^{4} - 410y^{2} + 187^{2} = 0\]
\[y^{2} = t:\]
\[t^{2} - 410t + 34\ 969 = 0\]
\[D = 42\ 025 - 34\ 969 =\]
\[= 7\ 056 = 84²\]
\[t_{1} = 205 + 84 = 289;\]
\[t_{2} = 205 - 84 = 121.\]
\[1)\ y^{2} = 289\]
\[y = 17;\ \ x = 11.\]
\[2)\ y^{2} = 121\]
\[y = 11;\ \ x = 17.\]
\[Ответ:числа\ 11\ и\ 17.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[|x| + 2|y| = 6\]
\[|x| = 6 - 2|y|\]
\[Ромб,\ со\ стороной\ \]
\[a = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}.\]
\[P = 4 \cdot 3\sqrt{5} = 12\sqrt{5}.\]
\[Ответ:ромб,\ 12\sqrt{5}.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[x^{2} + 4x + y^{2} - 2y \leq 4\]
\[Круг\ радиусом\ 3\ см.\]
\[S = 3^{2} \cdot \pi = 9\pi.\]
\[Ответ:круг,\ 9\pi.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} x^{2} + y^{2} \leq 36 \\ y \leq |x|\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[Сектор\ круга\ радиусом\ 6.\]
\[S = \frac{6^{2}\pi}{4} \cdot 3 = 27\pi.\]
\[Ответ:сектор;27\pi.\]