Решебник по алгебре 9 класс Рурукин контрольные работы КР-4. Уравнения и неравенства с двумя переменными Вариант 3

Авторы:
Тип:контрольные и самостоятельные
Серия:Пособие для учителей
Нужно другое издание?

Вариант 3

Условие:

1. Решите систему уравнений

\[\left\{ \begin{matrix} x^{2} + 2xy - 3y^{2} = 0\ \ \\ 2x^{2} + y^{2} = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

2. Найдите решение системы уравнений

\[\left\{ \begin{matrix} x + y + xy = 5 \\ x^{2} + y^{2} = 5\ \ \ \ \ \ \\ \end{matrix} \right.\ \]

3. Произведение двух натуральных чисел равно 154, а сумма их квадратов равна 317. Найдите эти числа.

4. На координатной плоскости изобразите множество решений уравнения 2|x|+|y|=4. Найдите периметр полученной фигуры.

5. Изобразите на координатной плоскости множество решений неравенства x²-6x+y²+4y<=3. Найдите площадь полученной фигуры.

6. Изобразите на координатной плоскости множество решений системы неравенств. Найдите площадь полученной фигуры.

\[\left\{ \begin{matrix} x^{2} + y^{2} \leq 16 \\ y \geq |x|\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]

\[\left\{ \begin{matrix} x^{2} + 2xy - 3y^{2} = 0 \\ {2x}^{2} + y^{2} = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left( x^{2} + 2xy + y^{2} \right) - 4y^{2} = 0\]

\[(x + y)^{2} - (2y)^{2} = 0\]

\[(x + y - 2y)(x + y + 2y) = 0\]

\[(x - y)(x + 3y) = 0\]

\[x = y;\ \ x = - 3y.\]

\[1)\ x = y:\]

\[2y^{2} + y^{2} = 3\]

\[3y^{2} = 3\]

\[y^{2} = 1\]

\[y = \pm 1\]

\[\left\{ \begin{matrix} y = 1 \\ x = 1 \\ \end{matrix}\ \right.\ \ \ \text{\ \ }и\text{\ \ \ \ \ }\left\{ \begin{matrix} y = - 1 \\ x = - 1 \\ \end{matrix} \right.\ \]

\[2)\ x = - 3y:\]

\[2 \cdot ( - 3y)^{2} + y^{2} = 3\]

\[18y^{2} + y^{2} = 3\]

\[19y^{2} = 3\]

\[y^{2} = \frac{3}{19}\]

\[y = \pm \frac{\sqrt{3}}{\sqrt{19}} = \frac{\sqrt{57}}{19}\]

\[x = - 3 \cdot \frac{\sqrt{57}}{19} = - \frac{3\sqrt{57}}{19}\]

\[x = - 3 \cdot \left( - \frac{\sqrt{57}}{19} \right) = \frac{3\sqrt{57}}{19}\]

\[\left\{ \begin{matrix} y = - \frac{\sqrt{57}}{19}\text{\ \ } \\ x = - \frac{3\sqrt{57}}{19} \\ \end{matrix} \right.\ \text{\ \ \ \ }и\text{\ \ \ \ }\left\{ \begin{matrix} y = \frac{\sqrt{57}}{19}\text{\ \ } \\ x = \frac{3\sqrt{57}}{19} \\ \end{matrix} \right.\ \]

\[Ответ:(1;1);( - 1; - 1);\]

\[\left( - \frac{3\sqrt{57}}{19}; - \frac{\sqrt{57}}{19} \right);\left( \frac{3\sqrt{57}}{19};\frac{\sqrt{57}}{19} \right).\]

\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]

\[\left\{ \begin{matrix} x + y + xy = 5 \\ x^{2} + y^{2} = 5\ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\left\{ \begin{matrix} x^{2} + y^{2} = 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2xy = 2\left( 5 - (x + y) \right) \\ \end{matrix} \right.\ ( + )\]

\[x^{2} + 2xy + y^{2} = 5 + 10 - 2(x + y)\]

\[(x + y)^{2} = 15 - 2(x + y)\]

\[Пусть\ (x + y) = a:\]

\[a^{2} + 2a - 15 = 0\]

\[D = 1 + 15 = 16\]

\[a_{1} = - 1 + 4 = 3;\]

\[a_{2} = - 1 - 4 = - 5\ \]

\[1)\ a = - 5:\]

\[x + y = - 5\]

\[xy = 5 - (x + y) = 5 + 5 = 10.\]

\[t^{2} + 5t + 10 = 0\]

\[D = 25 - 40 < 0\]

\[нет\ корней.\]

\[2)\ a = 3:\]

\[x + y = 3\]

\[xy = 5 - (x + y) = 5 - 3 = 2\]

\[t^{2} - 3t + 2 = 0\]

\[D = 9 - 8 = 1\]

\[t_{1} = \frac{3 + 1}{2} = 2;\ \ \]

\[t_{2} = \frac{3 - 1}{2} = 1\]

\[\left\{ \begin{matrix} x = 2 \\ y = 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x = 1 \\ y = 2 \\ \end{matrix} \right.\ \]

\[Ответ:(2;1);\ \ (1;2).\]

\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]

\[Пусть\ \text{x\ }и\ y - два\ натуральных\ \]

\[числа.\]

\[x \cdot y = 154;\]

\[x^{2} + y^{2} = 317.\]

\[Составим\ систему\ уравнений:\]

\[\left\{ \begin{matrix} xy = 154\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ x^{2} + y^{2} = 317\ \ \ \ \ \ \\ \end{matrix} \right.\ \ \]

\[\left\{ \begin{matrix} x = \frac{154}{y}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \left( \frac{154}{y} \right)^{2} + y^{2} = 317 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[y^{4} - 317y^{2} + 154^{2} = 0\]

\[D = 317^{2} - 4 \cdot 154^{2} =\]

\[= 100\ 489 - 94\ 864 = 5\ 625\]

\[y^{2} = \frac{317 + \sqrt{5625}}{2} =\]

\[= \frac{317 + 75}{2} = \frac{392}{2} = 196\ \]

\[y = \pm \sqrt{196} = \pm 16;\]

\[y^{2} = \frac{317 - \sqrt{5625}}{2} = \frac{317 - 95}{2} =\]

\[= \frac{242}{2} = 121\]

\[y = \pm \sqrt{121} = \pm 11\]

\[\left\{ \begin{matrix} y = 14 \\ x = 11 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }и\text{\ \ \ }\left\{ \begin{matrix} y = 11 \\ x = 14 \\ \end{matrix} \right.\ \]

\[Ответ:два\ числа\ 11\ и\ 14.\]

\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]

\[2|x| + |y| = 4\]

\[Ромб\ со\ стороной\ \]

\[a = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5}.\]

\[P = 4 \cdot 2\sqrt{5} = 8\sqrt{5}.\]

\[Ответ:ромб;8\sqrt{5}.\]

\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]

\[x^{2} - 6x + y^{2} + 4y \leq 3\]

\[Круг\ радиусом\ 4.\]

\[S = \pi \cdot 4^{2} = 16\pi.\]

\[Ответ:круг;16\pi.\]

\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]

\[\left\{ \begin{matrix} x^{2} + y^{2} \leq 16 \\ y \geq |x|\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[Сектор\ круга\ радиусом\ 4.\]

\[S = \frac{4^{2}\pi}{4} = 4\pi.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам