1. С двухметровой высоты под углом к горизонту выпущена ракета. По графику изменения высоты её полёта в зависимости от времени движения ответьте на вопросы:
а) Через сколько секунд после начала полёта ракета достигла максимальной высоты?
б) Какое расстояние пролетела ракета за первые 3 с полёта?
2. Функция задана формулой y=5x^2-8x+3.
а) Найдите значение функции при х = -1.
б) При каких значениях х функция принимает значение, равное 3?
в) Найдите нули функции.
3. а) Постройте график функции y=x^2-6x+5.
б) Укажите значения аргумента, при которых функция принимает положительные значения.
в) Укажите промежуток, на котором функция возрастает.
4. Решите неравенство x^2-4x-5<0.
5. Найдите область определения функции y=корень из (25-x^2).
6. Запишите уравнение параболы y=2x^2, если известно, что она получена сдвигом параболы вдоль оси х на 3 единицы влево и вдоль оси у на 1 единицу вниз.
7. При каких значениях b и с вершина параболы y=3x^2+bx+c находится в точке (1; -2)?
*8. На рисунке изображён график функции y=ax^2+bx+c. Определите знаки коэффициентов а, b и с.
\[\boxed{\mathbf{1.}}\]
\[\textbf{а)}\ через\ 2\ с.\]
\[\textbf{б)}\ 22 + 6 = 28\ (м).\]
\[\boxed{\mathbf{2.}}\]
\[y = 5x^{2} - 8x + 3\]
\[\textbf{а)}\ x = - 1:\]
\[y = 5 \cdot 1 + 8 + 3 = 16.\]
\[Ответ:y = 16.\ \]
\[\textbf{б)}\ y = 3:\]
\[5x^{2} - 8x + 3 = 3\]
\[5x^{2} - 8x = 0\]
\[x(5x - 8) = 0\]
\[1)\ x = 0.\]
\[2)\ 5x - 8 = 0\]
\[5x = 8\]
\[x = \frac{8}{5}\]
\[x = 1,6.\]
\[Ответ:\ при\ x = 0;x = 1,6.\]
\[\textbf{в)}\ Нули\ функции:\]
\[5x^{2} - 8x + 3 = 0\]
\[D = 64 - 60 = 4\]
\[x_{1} = \frac{8 + 2}{10} = 1;\ \ x_{2} = \frac{8 - 2}{10} = 0,6.\]
\[Ответ:\ x_{1} = 1;x_{2} = 0,6.\]
\[\boxed{\mathbf{3.}}\]
\[\textbf{а)}\ y = x^{2} - 6x + 5\]
\[D_{1} = 9 - 5 = 4\]
\[x_{1} = 3 + 2 = 5;x_{2} = 3 - 2 = 1.\]
\[x_{0} = - \frac{b}{2a} = \frac{6}{2} = 3;\]
\[y_{0} = 9 - 18 + 5 = - 4.\]
\[\textbf{б)}\ x \in ( - \infty;1) \cup (5;\ + \infty).\]
\[\textbf{в)}\ Функция\ возрастает\ на\ промежутке\]
\[\lbrack 3; + \infty).\]
\[\boxed{\mathbf{4.}}\]
\[x^{2} - 4x - 5 < 0\]
\[D_{1} = 4 + 5 = 9\]
\[x_{1} = 2 + 3 = 5;x_{2} = 2 - 3 = - 1.\]
\[(x + 1)(x - 3) < 0\]
\[x \in ( - 1;5).\]
\[Ответ:\ x \in ( - 1;5).\]
\[\boxed{\mathbf{5.}}\]
\[y = \sqrt{25 - x^{2}}\]
\[ООФ:\]
\[25 - x^{2} \geq 0\]
\[x^{2} - 25 \leq 0\]
\[(x + 5)(x - 5) \leq 0\]
\[x \in \lbrack - 5;5\rbrack.\]
\[Ответ:\ x \in \lbrack - 5;5\rbrack.\]
\[\boxed{\mathbf{6.}}\]
\[y = 2x^{2}\]
\[y = 2 \cdot (x + 3)^{2} - 1 =\]
\[= 2 \cdot \left( x^{2} + 6x + 9 \right) - 1 =\]
\[= 2x^{2} + 12x + 18 - 1 =\]
\[= 2x^{2} + 12x + 17.\]
\[Уравнение\ параболы:\]
\[y = 2x^{2} + 12x + 17.\]
\[\boxed{\mathbf{7.}}\]
\[y = 3x^{2} + bx + c;вершина\ (1; - 2):\]
\[x_{0} = - \frac{b}{2a}\]
\[1 = - \frac{b}{6}\]
\[b = - 6.\]
\[y_{0} = 3x^{2} + bx + c\]
\[- 2 = 3 \cdot 1^{2} + ( - 6) \cdot 1 + c\]
\[c = - 2 - 3 + 6\]
\[c = 1.\]
\[Ответ:b = - 6;\ \ c = 1.\]
\[\boxed{\mathbf{8.}}\]
\[y = ax^{2} + bx + c\]
\[x_{1} < 0;x_{2} > 0\]
\[a > 0;так\ как\ ветви\ вниз;\]
\[b < 0;так\ как\ x_{1} + x_{2} = - \frac{b}{a} < 0.\ \]
\[c > 0;так\ как\ x_{1} \cdot x_{2} = \frac{c}{a} < 0;\ \ a < 0.\]