1. Мяч подбросили вертикально вверх с высоты 1,5 м, придав ему начальную скорость 10 м/с. По графику изменения высоты его полёта в зависимости от времени движения ответьте на вопросы:
а) Через какое время мяч достиг максимальной высоты?
б) На какой высоте находился мяч через 0,5 с после начала полёта?
2. Функция задана формулой y=3x^2+2x-5.
а) Найдите значение функции при х = -2.
б) При каких значениях х функция принимает значение, равное -5?
в) Найдите нули функции.
3. а) Постройте график функции y=x^2+2x-8.
б) Укажите значения аргумента, при которых функция принимает отрицательные значения.
в) Укажите промежуток, на котором функция убывает.
4. Решите неравенство x^2-3x+2>0.
5. Найдите область определения выражения корень из (1/2*a^2-2).
6. Запишите уравнение параболы, если известно, что она получена сдвигом параболы y=-x^2 вдоль оси х на 4 единицы вправо и вдоль оси у на 2 единицы вверх.
7. При каких значениях b и с вершина параболы y=2x^2+bx+c находится в точке (-1; 3)?
*8. На рисунке изображён график функции y=ax^2+bx+c. Определите знаки коэффициентов а, b и с.
\[\boxed{\mathbf{1.}}\]
\[\textbf{а)}\ через\ 1\ с.\]
\[\textbf{б)}\ на\ высоте\ 5,5\ м.\]
\[\boxed{\mathbf{2.}}\]
\[y = 3x^{2} + 2x - 5\]
\[\textbf{а)}\ x = - 2:\]
\[y = 3 \cdot ( - 2)^{2} + 2 \cdot ( - 2) - 5 =\]
\[= 12 - 4 - 5 = 3.\ \]
\[Ответ:y = 3.\]
\[\textbf{б)}\ y = - 5:\]
\[3x^{2} + 2x - 5 = - 5\]
\[3x^{2} + 2x = 0\]
\[x(3x + 2) = 0\]
\[1)\ x = 0;\]
\[2)\ 3x + 2 = 0\]
\[3x = - 2\]
\[x = - \frac{2}{3}.\]
\[Ответ:при\ x = - \frac{2}{3};\ \ x = 0.\]
\[\textbf{в)}\ Нули\ функции:\]
\[3x^{2} + 2x - 5 = 0\]
\[D = 4 + 60 = 64\]
\[x_{1} = \frac{- 2 + 8}{6} = 1;\ \ \]
\[x_{2} = \frac{- 2 - 8}{6} = - \frac{10}{6} = - \frac{5}{3} = - 1\frac{2}{3}.\]
\[Ответ:x = - 1\frac{2}{3};\ \ x = 1.\]
\[\boxed{\mathbf{3.}}\]
\[\textbf{а)}\ x^{2} + 2x - 8 = 0\]
\[D_{1} = 1 + 8 = 9\]
\[x_{1} = - 1 + 3 = 2;x_{2} = - 1 - 3 = - 4.\]
\[x_{0} = - \frac{b}{2a} = - \frac{2}{2} = - 1;\]
\[y_{0} = 1 - 2 - 8 = - 9.\]
\[\textbf{б)}\ x \in ( - 4;\ - 2).\]
\[\textbf{в)}\ Функция\ убывает\ на\ промежутке:\]
\[( - \infty; - 1\rbrack.\]
\[\boxed{\mathbf{4.}}\]
\[x^{2} - 3x + 2 > 0\]
\[По\ теореме\ Виета:\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = 2;\]
\[x_{1} = 1;\ \ \ x_{2} = 2.\]
\[(x - 1)(x - 2) > 0\]
\[x \in ( - \infty;1) \cup (2; + \infty).\]
\[\boxed{\mathbf{5.}}\]
\[\sqrt{\frac{1}{2}a^{2} - 2}\]
\[ОДЗ:\]
\[\frac{1}{2}a^{2} - 2 \geq 0\ \ \ \ \ \ | \cdot 2\]
\[a^{2} - 4 \geq 0\]
\[(a + 2)(a - 2) \geq 0\]
\[a \in ( - \infty; - 2\rbrack \cup \lbrack 2; + \infty).\]
\[\boxed{\mathbf{6.}}\]
\[y = - x^{2}\]
\[y = - (x - 4)^{2} + 2 =\]
\[= - \left( x^{2} - 8x + 16 \right) + 2 =\]
\[= - x^{2} + 8x - 16 + 12 =\]
\[= - x^{2} + 8x - 4.\]
\[Уравнение\ параболы:\]
\[y = - x^{2} + 8x - 4.\]
\[\boxed{\mathbf{7.}}\]
\[y = 2x^{2} + bx + c;\ \ вершина\ ( - 1;3):\]
\[x_{0} = - \frac{b}{4}\]
\[- 1 = - \frac{b}{4}\]
\[b = 4.\]
\[y_{0} = 2x^{2} + 4x + c\]
\[3 = 2 \cdot ( - 1)^{2} + 4 \cdot ( - 1) + c\]
\[c = 3 - 2 + 4 = 5.\]
\[Ответ:при\ b = 4;\ \ c = 5.\]
\[\boxed{\mathbf{8.}}\]
\[y = ax^{2} + bx + c\]
\[a > 0;так\ как\ ветви\ вверх.\]
\[b < 0;так\ как\ сумма\ корней\ \]
\[положительна.\]
\[c > 0;так\ как\ корни\ положительные,\]
\[а\ c = x_{1} \cdot x_{2}.\]