Условие:
1. Решите неравенство:
1) x^2+3x-4>0
2) 4x^2-8x≤0
3) x^2>4
4) x^2-10x+25≤0
2. Решите систему уравнений
\[\left\{ \begin{matrix} y + 2x = 5\ \ \ \ \ \\ 2x - xy = - 1 \\ \end{matrix} \right.\ \]
3. Найдите область определения функции:
1) y=√(4x-x^2 )
2) y=5/√(5-14x-3x^2 )
4. Решите графически систему уравнений
\[\left\{ \begin{matrix} y = x^{2} + 4x \\ y - x = 4\ \ \ \ \ \\ \end{matrix} \right.\ \]
5. Расстояние между двумя посёлками, равное 12 км, первый пешеход проходит на 1 ч быстрее второго. Найдите скорость каждого пешехода, если второй пешеход за 2 ч проходит на 2 км больше, чем первый за 1 ч.
6. Решите систему уравнений
\[\left\{ \begin{matrix} 9x^{2} - 12xy + 4y^{2} = 9 \\ x + 2y = 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
Решение:
\[\boxed{\mathbf{1.}\mathbf{\ }}\]
\[1)\ x^{2} + 3x - 4 > 0\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = - 4\]
\[x_{1} = - 4;\ \ x_{2} = 1\]
\[(x + 4)(x - 1) > 0\]
\[x \in ( - \infty; - 4) \cup (1; + \infty).\]
\[2)\ 4x^{2} - 8x \leq 0\]
\[4x(x - 2) \leq 0\]
\[x \in \lbrack 0;2\rbrack.\]
\[3)\ x^{2} > 4\]
\[x^{2} - 4 > 0\]
\[(x + 2)(x - 2) > 0\]
\[x \in ( - \infty; - 2) \cup (2; + \infty).\]
\[4)\ x^{2} - 10x + 25 \leq 0\]
\[(x - 5)^{2} \leq 0\]
\[x = 5.\]
\[\boxed{\mathbf{2.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} y + 2x = 5\ \ \ \ \ \ \\ 2x - xy = - 1 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} y = 5 - 2x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x - x(5 - 2x) = - 1 \\ \end{matrix} \right.\ \]
\[2x - 5x + 2x^{2} + 1 = 0\]
\[2x^{2} - 3x + 1 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{3 + 1}{4} = 4;\ \ \ \]
\[x_{2} = \frac{3 - 1}{4} = \frac{1}{2}\]
\[\left\{ \begin{matrix} x = 4\ \ \ \\ y = - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ }\ и\text{\ \ \ \ \ }\left\{ \begin{matrix} x = \frac{1}{2} \\ y = 4 \\ \end{matrix} \right.\ \]
\[Ответ:(4;\ - 3);\ \ (0,5;4).\]
\[\boxed{\mathbf{3.}\mathbf{\ }}\]
\[1)\ y = \sqrt{4x - x^{2}}\]
\[4x - x^{2} \geq 0\]
\[x^{2} - 4x \leq 0\]
\[x(x - 4) \leq 0\]
\[D(y) = \lbrack 0;4\rbrack.\]
\[2)\ y = \frac{5}{\sqrt{5 - 14x - 3x^{2}}}\]
\[5 - 14x - 3x^{2} > 0\]
\[3x^{2} + 14x - 5 < 0\]
\[D = 49 + 15 = 64\]
\[x_{1} = \frac{- 7 + 8}{3} = \frac{1}{3};\ \ \]
\[x_{2} = \frac{- 7 - 8}{3} = - 5\]
\[3(x + 5)\left( x - \frac{1}{3} \right) < 0\]
\[D(y) = \left( - 5;\frac{1}{3} \right).\]
\[\boxed{\mathbf{4.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} y = x^{2} + 4x \\ y - x = 4\ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2} + 4x \\ y = x + 4\ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x = - 4;\ \ x = 1.\]
\[Ответ:( - 4;0);(1;5).\]
\[\boxed{\mathbf{5.}\mathbf{\ }}\]
\[Пусть\ \text{x\ }\frac{км}{ч} - скорость\ \ \]
\[первого\ пешехода;\]
\[\text{y\ }\frac{км}{ч} - скорость\ второго\ \]
\[пешехода.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{12}{y} - \frac{12}{x} = 1\ \ | \cdot xy \\ 2y - x = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ }\]
\[\left\{ \begin{matrix} x = 2y - 2\ \ \ \ \ \ \ \ \ \ \ \\ 12x - 12y = xy \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 2y - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 12(2y - 2) - 12y = y(2y - 2) \\ \end{matrix} \right.\ \]
\[24y - 24 - 12y = 2y^{2} - 2y\]
\[2y^{2} - 2y - 12y + 24 = 0\]
\[2y^{2} - 14y + 24 = 0\ \ \ |\ :2\]
\[y^{2} - 7y + 12 = 0\]
\[y_{1} + y_{2} = 7;\ \ \ y_{1} \cdot y_{2} = 12\]
\[y_{1} = 4;\ \ y_{2} = 3\]
\[\left\{ \begin{matrix} y = 4 \\ x = 6\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = 3 \\ x = 4 \\ \end{matrix} \right.\ \]
\[Ответ:6\frac{км}{ч};4\ \frac{км}{ч}\ или\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ 4\ \frac{км}{ч};3\ \frac{км}{ч}\text{.\ }\]
\[\boxed{\mathbf{6.}\mathbf{\ }}\]
\[\left\{ \begin{matrix} 9x^{2} - 12xy + 4y^{2} = 9 \\ x + 2y = 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x = 9 - 2y\ \ \ \ \ \ \ \ \\ (3x - 2y)^{2} = 9 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = 9 - 2y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left( 3(9 - 2y) - 2y \right)^{2} = 9 \\ \end{matrix} \right.\ \]
\[(27 - 6y - 2y)^{2} = 9\]
\[(27 - 8y)^{2} = 9\]
\[1)\ 27 - 8y = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[- 8y = - 24\ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[y = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]
\[2)\ 27 - 8y = - 3\]
\[- 8y = - 30\]
\[y = \frac{30}{8} = \frac{15}{4} = 3,75\]
\[\left\{ \begin{matrix} y = 3 \\ x = 3 \\ \end{matrix} \right.\ \text{\ \ \ \ }\ и\text{\ \ \ \ \ }\left\{ \begin{matrix} y = 3,75 \\ x = 1,5\ \\ \end{matrix} \right.\ \]
\[Ответ:(3;3);\ \ (1,5;3,75).\]