\[\boxed{\mathbf{891\ (891).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ \sqrt{9 \cdot 100} = 3 \cdot 10 = 30\]
\[2)\ \sqrt{0,49 \cdot 16} = 0,7 \cdot 4 = 2,8\]
\[3)\ \sqrt{676 \cdot 0,04} = 26 \cdot 0,2 = 5,2\]
\[4)\ \sqrt{0,64 \cdot 0,25 \cdot 121} =\]
\[= 0,8 \cdot 0,5 \cdot 11 = 4,4\]
\[5)\ \sqrt{\frac{25}{196}} = \frac{5}{14}\]
\[6)\ \sqrt{18\frac{1}{16}} = \sqrt{\frac{289}{16}} = \frac{17}{4} = 4\frac{1}{4}\]
\[7)\ \sqrt{\frac{9}{64} \cdot \frac{1024}{1089}} = \frac{3 \cdot 32}{8 \cdot 33} = \frac{4}{11}\]
\[8)\ \sqrt{3\frac{13}{36} \cdot 4\frac{29}{49}} = \sqrt{\frac{121}{36} \cdot \frac{225}{49}} =\]
\[= \frac{11 \cdot 15}{6 \cdot 7} = \frac{55}{14} = 3\frac{13}{14}\]
\[\boxed{\mathbf{8}\mathbf{91}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{a^{2} + 4}{2} \geq \sqrt{a^{2} + 3}\]
\[\frac{a^{2} + 4}{2} - \sqrt{a^{2} + 3} =\]
\[= \frac{a^{2} + 4 - 2\sqrt{a^{2} + 3}}{2} \geq 0\]
\[a^{2} + 4 - 2\sqrt{a^{2} + 3} \geq 0\]
\[Пусть\ a^{2} + 4 = 2\sqrt{a^{2} + 3}:\ \]
\[\left( a^{2} + 4 \right)^{2} = 4\left( a^{2} + 3 \right)\]
\[a^{4} + 8a^{2} + 16 = 4a^{2} + 12\]
\[a^{4} + 4a^{2} + 4 \geq 0 - при\ всех\ a.\]
\[Получаем,\ что\ \frac{a^{2} + 4}{2} \geq\]
\[\geq \sqrt{a^{2} + 3} - при\ всех\ a.\]
\[Ответ:выполняется.\]