\[\boxed{\mathbf{888\ (888).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\ 0,4 \cdot \sqrt{625} - \frac{1}{4} \cdot \sqrt{144} =\]
\[= 0,4 \cdot 25 - \frac{1}{4} \cdot 12 = 10 - 3 = 7\]
\[2)\ \sqrt{64} \cdot \sqrt{0,25} + \sqrt{2^{4} + 9} =\]
\[= 8 \cdot 0,5 + 5 = 9\]
\[3)\ 3\sqrt{0,25} - \sqrt{7^{2} + 24^{2}} =\]
\[= 3 \cdot 0,5 - 25 = - 23,5\]
\[= \sqrt{\frac{36}{25}} + \sqrt{\frac{81}{25}} - 0,04 \cdot 100 =\]
\[= \frac{6}{5} + \frac{9}{5} - 4 = 3 - 4 = - 1\]
\[5)\frac{1}{5}\sqrt{625} - \frac{3}{17}\sqrt{289} =\]
\[= \frac{1}{5} \cdot 25 - \frac{3}{17} \cdot 17 = 5 - 3 = 2\]
\[\boxed{\mathbf{8}\mathbf{88}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[1)\frac{a^{2}}{a^{4} + 1} \leq \frac{1}{2}\]
\[\frac{{a^{2}}^{\backslash 2}}{a^{4} + 1} - \frac{1^{\backslash a^{4} + 1}}{2} \leq 0\]
\[\frac{2a^{2} - a^{4} - 1}{2\left( a^{4} + 1 \right)} \leq 0\]
\[- \frac{\left( a^{2} - 1 \right)^{2}}{2\left( a^{4} + 1 \right)} \leq 0\ \]
\[\frac{\left( a^{2} - 1 \right)^{2}}{2\left( a^{4} + 1 \right)} \geq 0\ \ при\ всех\ a.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ \frac{(5a + 1)^{2}}{5} \geq 4a\ \ \ \ \ \ \ \ \ | \cdot 5\]
\[(5a + 1)^{2} \geq 20a\]
\[25a^{2} + 10a + 1 - 20a \geq 0\]
\[25a^{2} - 10a + 1 \geq 0\]
\[(5a - 1)^{2} \geq 0\text{\ \ \ \ }при\ всех\ a.\]
\[Что\ и\ требовалось\ доказать.\]