\[\boxed{\mathbf{883\ (883).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = \frac{5}{|x|}\]
\[y = \frac{5}{x},\ \ x > 0\]
\[x\] | \[1\] | \[- 1\] | \[5\] | \[- 5\] |
---|---|---|---|---|
\[y\] | \[5\] | \[- 5\] | \[1\] | \[- 1\] |
\[y = - \frac{5}{x},\ \ x < 0\]
\[x\] | \[1\] | \[- 1\] | \[5\] | \[- 5\] |
---|---|---|---|---|
\[y\] | \[- 5\] | \[5\] | \[- 1\] | \[1\] |
\[\boxed{\mathbf{8}\mathbf{83}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{a}{b};\ \ \ a > 0,\ \ \ b > 0;\ \ a < b -\]
\[так\ \ как\ дробь\ правильная.\]
\[Новая\ дробь:\ \ \frac{a + 1}{b + 1}.\]
\[Определим\ разность:\]
\[\frac{a^{\backslash b + 1}}{b} - \frac{a + 1^{\backslash b}}{b + 1} =\]
\[= \frac{a(b + 1) - b(a + 1)}{b(b + 1)} =\]
\[= \frac{ab + a - ab - b}{b(b + 1)} = \frac{a - b}{b(b + 1)}.\]
\[\frac{a - b}{b(b + 1)} < 0.\]
\[\frac{a}{b} < \frac{a + 1}{b + 1}.\]
\[Ответ:увеличится.\ \]