\[\boxed{\mathbf{884\ (884).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = \frac{4}{x}\]
\[x\] | \[1\] | \[- 1\] | \[2\] | \[- 2\] | \[4\] | \[- 4\] |
---|---|---|---|---|---|---|
\[y\] | \[4\] | \[- 4\] | \[2\] | \[- 2\] | \[1\] | \[- 1\] |
\[y = x - 3\]
\[x\] | \[0\] | \[1\] | \[3\] |
---|---|---|---|
\[y\] | \[- 3\] | \[- 2\] | \[0\] |
\[Ответ:( - 1;\ - 4);\ \ (4;1).\]
\[\boxed{\mathbf{8}\mathbf{84}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[\frac{a}{b};\ \ \ a > 0,\ \ \ b > 0;\ \ a > b -\]
\[так\ \ как\ дробь\ неправильная.\]
\[Новая\ дробь:\ \ \frac{a + 1}{b + 1}\]
\[Определим\ разность:\]
\[\frac{a^{\backslash b + 1}}{b} - \frac{a + 1^{\backslash b}}{b + 1} =\]
\[= \frac{a(b + 1) - b(a + 1)}{b(b + 1)} =\]
\[= \frac{ab + a - ab - b}{b(b + 1)} = \frac{a - b}{b(b + 1)}.\]
\[\frac{a - b}{b(b + 1)} > 0.\]
\[\frac{a}{b} > \frac{a + 1}{b + 1}.\]
\[Ответ:дробь\ уменьшится.\]