\[\boxed{\mathbf{882\ (882).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = \frac{6}{x}\]
\[x\] | \[1\] | \[2\] | \[3\] | \[- 1\] | \[- 2\] | \[- 3\] |
---|---|---|---|---|---|---|
\[y\] | \[6\] | \[3\] | \[2\] | \[- 6\] | \[- 3\] | \[- 2\] |
\[1)x = 2 \Longrightarrow \ y = 3\]
\[x = - 1,5 \Longrightarrow y = - 4\]
\[x = 4 \Longrightarrow y = 1,5\]
\[2)\ y = - 2 \Longrightarrow x = - 3\]
\[y = 3 \Longrightarrow x = 2\]
\[y = - 4,5 \Longrightarrow x = - \frac{4}{3}\]
\[3)\ y < 0\ \ при\ \ x \in ( - \infty;0).\]
\[\boxed{\mathbf{8}\mathbf{82}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[a > 0;\ \ b > 0:\]
\[a^{2} + b^{2}\ и\ \ (a + b)^{2}\]
\[a^{2} + b^{2} - (a + b)^{2} =\]
\[= a^{2} + b^{2} - a^{2} - 2ab - b^{2} =\]
\[= - 2ab.\]
\[Значит:\]
\[a^{2} + b^{2} < (a + b)^{2}.\]