\[\boxed{\mathbf{881\ (881).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]
\[y = - \frac{24}{x}\]
\[1)\ x = - 4 \Longrightarrow y = - \frac{24}{- 4} = 6\]
\[x = 8 \Longrightarrow y = - \frac{24}{8} = - 3\]
\[x = 1,2 \Longrightarrow y = - \frac{24}{1,2} = - 20\]
\[2)\ y = - \frac{24}{x} \Longrightarrow \ x = - \frac{24}{y}\]
\[y = 24 \Longrightarrow x = - \frac{24}{24} = - 1\]
\[y = - 18 \Longrightarrow x = - \frac{24}{- 18} = \frac{8}{6} = \frac{4}{3}\]
\[y = 60 \Longrightarrow x = - \frac{24}{60} = - \frac{2}{5}\ \]
\[\boxed{\mathbf{8}\mathbf{81}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]
\[Пусть\ n;n + 1;n + 2 - три\ \]
\[последовательных\ \]
\[натуральных\ числа.\]
\[1)\ (n + 1)^{2} - n(n + 2) =\]
\[= n^{2} + 2n + 1 - n^{2} - 2n =\]
\[= 1 > 0\]
\[Значит,\ (n + 1)^{2} > n(n + 2).\]
\[2)\ 2 \cdot (n + 1)^{2} -\]
\[- \left( n^{2} + (n + 2)^{2} \right) =\]
\[= 2 \cdot \left( n^{2} + 2n + 1 \right) -\]
\[- \left( n^{2} + n^{2} + 4n + 4 \right) =\]
\[= 2n^{2} + 4n + 2 - 2n^{2} -\]
\[- 4n - 4 = - 2.\]
\[Значит,\ 2 \cdot (n + 1)^{2} <\]
\[< \left( n^{2} + (n + 2)^{2} \right).\]