\[\boxed{\text{88\ (88).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\frac{a}{b} = - 2;\]
\[\frac{b}{a} = - \frac{1}{2}.\]
\[1)\ \frac{a - b}{a} = \frac{a}{a} - \frac{b}{a} = 1 - \frac{b}{a} =\]
\[= 1 + \frac{1}{2} = 1,5\]
\[2)\ \frac{4a + 5b}{b} = \frac{4a}{b} + \frac{5b}{b} =\]
\[= 4 \cdot \frac{a}{b} + 5 = 4 \cdot ( - 2) + 5 =\]
\[= - 8 + 5 = - 3\]
\[3)\ \frac{a^{2} - 2ab + b^{2}}{\text{ab}} =\]
\[= \frac{a^{2}}{\text{ab}} - \frac{2ab}{\text{ab}} + \frac{b^{2}}{\text{ab}} = \frac{a}{b} - 2 + \frac{b}{a} =\]
\[= - 2 - 2 - \frac{1}{2} = - 4,5\]
\[\boxed{\text{88.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{8n - 9}{n} = \frac{8n}{n} - \frac{9}{n} = 8 - \frac{9}{n} \Longrightarrow\]
\[\Longrightarrow целое\ при\text{\ n} = 1,\ 3,\ 9.\]
\[2)\ \frac{n^{2} + 2n - 8}{n} = \frac{n^{2}}{n} + \frac{2n}{n} - \frac{8}{n} =\]
\[= n + 2 - \frac{8}{n} \Longrightarrow целое,\ при\ n =\]
\[= 1,\ 2,\ 4,\ 8.\]
\[3)\ \frac{9n - 4}{3n - 5} = \frac{9n - 15 + 11}{3n - 5} =\]
\[= \frac{9n - 15}{3n - 5} + \frac{11}{3n - 5} =\]
\[= \frac{3 \cdot (3n - 5)}{3n - 5} + \frac{11}{3n - 5} =\]
\[= 3 + \frac{11}{3n - 5} \Longrightarrow целое\ при\ n = 2.\]