Решебник по алгебре 8 класс Мерзляк ФГОС Задание 826

Авторы:
Год:2024
Тип:учебник
Серия:Алгоритм успеха

Задание 826

Выбери издание
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021
 
фгос Мерзляк ФГОС
Издание 1
Алгебра 8 класс ФГОС Мерзляк, Полонский, Якир Вентана-Граф 2020-2021

\[\boxed{\mathbf{826\ (826).\ }Еуроки\ - \ ДЗ\ без\ мороки}\]

\[Пусть\ x\frac{км}{ч} - скорость\ \]

\[течения\ реки,\ \]

\[тогда\ (12 - x)\frac{км}{ч} -\]

\[скорость\ катера\ против\ \]

\[течения\ реки.\ Значит,\ плот\ \]

\[плыл\ \frac{14}{x}\ ч,\]

\[а\ катер\ - \frac{32 - 14}{12 - x}\ ч.\ \]

\[По\ условию\ изветстно,\ \]

\[что\ плот\ отплыл\ \]

\[на\ 2\ ч\ 40\ мин = 2\frac{2}{3} = \frac{8}{3}\ ч\ \]

\[раньше.\]

\[Составляем\ уравнение:\]

\[\frac{14}{x} - \frac{18}{12 - x} = \frac{8}{3}\]

\[8x^{2} - 192x + 504 = 0\ \ \ \ |\ :8\]

\[x^{2} - 24x + 63 = 0\]

\[x_{1} + x_{2} = 24,\ \ \text{\ x}_{1}x_{2} = 63\]

\[x_{1} = 3\]

\[x_{2} = 21\]

\[Проверим:12 - 3 = 9\ \left( \frac{км}{ч} \right).\]

\[12 - 21 = - 9\ \left( \frac{км}{ч} \right) - не\ \]

\[удовлетворяет\ условию.\ \]

\[3\ \frac{км}{ч} - скорость\ течения\ \]

\[реки.\]

\[Ответ:3\frac{км}{ч}.\]

Издание 2
фгос Мерзляк ФГОС

\[\boxed{\mathbf{82}\mathbf{6}\mathbf{\text{.\ }}Еуроки\ - \ ДЗ\ без\ мороки}\]

\[1)\ \frac{x^{2} - 8x + 7}{x - a} = 0\]

\[x^{2} - 8x + 7 = 0\]

\[x_{1} + x_{2} = 8,\ \ x_{1}x_{2} = 7,\]

\[\text{\ \ }x_{1} = 7,\ \ x_{2} = 1\]

\[x \neq a\]

\[\frac{(x - 7)(x - 1)}{x - a} = 0\]

\[если\ a = 1,\ \]

\[то\ \frac{(x - 7)(x - 1)}{x - 1} = 0,\ \ \]

\[x = 7,\ \ x \neq 1;\]

\[если\ a = 7,\ \]

\[то\ \frac{(x - 7)(x - 1)}{x - 7} = 0,\]

\[x = 1,\ \ x \neq 7;\ \]

\[если\ a \neq 7\ \ и\ \ \ a \neq 1,\ то\ x = 7\ \ \]

\[или\ \ x = 1.\]

\[2)\ \frac{x - a}{x^{2} - 8x + 7} = 0\]

\[\frac{x - a}{(x - 7)(x - 1)} = 0\]

\[если\ a \neq 7\ \ и\ \ \ a \neq 1,\ то\ x = a;\]

\[если\ a = 1\ \ или\ a = 7,\ \]

\[то\ корней\ нет.\]

\[3)\ \frac{x² - (3a + 2)x + 6a}{x - 6} = 0\]

\[x² - (3a + 2)x + 6a = 0\]

\[D = 9a^{2} + 12a + 4 - 24a =\]

\[= 9a^{2} - 12a + 4 = (3a - 2)²\]

\[x = \frac{3a + 2 + 3a - 2}{2} = 3a\]

\[x = \frac{3a + 2 - 3a + 2}{2} = 2\]

\[\frac{(x - 3a)(x - 2)}{x - 6} = 0\]

\[если\ a \neq 2\ \ и\ \ a \neq \frac{2}{3},\ то\ \ x = 3a\ \ \]

\[или\ x = 2,\ \ x \neq 6;\]

\[если\ a = 2\ \ или\ \ a = \frac{2}{3},то\ \ x = 2.\ \]

\[4)\ \frac{a(x - a)}{x + 3} = 0\]

\[если\ a = 0,\ то\ x - любое\ число,\ \]

\[кроме\ x = - 3;\]

\[если\ \ a = - 3,\ то\ корней\ нет,\]

\[так\ как\ a \neq 0;\]

\[если\ a \neq 0\ \ и\ \ a \neq - 3,\]

\[то\ \ x = a.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам